2671: Calc

题意:

问多少对a,ba,ba,b满足1≤a&lt;b≤n1 \le a &lt; b \le n1a<bn(a+b)∣ab(a+b)|ab(a+b)ab

题解:

先考虑什么情况满足a+b∣aba+b|aba+bab
d=gcd(a,b)d=gcd(a,b)d=gcd(a,b),则a′d+b′d∣a′b′d2−&gt;a′+b′∣a′b′da&#x27;d+b&#x27;d|a&#x27;b&#x27;d^2-&gt;a&#x27;+b&#x27;|a&#x27;b&#x27;dad+bdabd2>a+babd
因为a′,b′a&#x27;,b&#x27;a,b互质,所以a′+b′,a′b′a&#x27;+b&#x27;,a&#x27;b&#x27;a+b,ab也互质
那么就是a′+b′∣da&#x27;+b&#x27;|da+bd
因为d&gt;b′d&gt;b&#x27;d>b所以b′&lt;=nb&#x27;&lt;=\sqrt nb<=n
m=nm=\sqrt nm=n
ans=∑b=1m∑a=1b−1[(a,b)=1]⌊na+b⌋ans=\sum_{b=1}^m\sum_{a=1}^{b-1}[(a,b)=1]\lfloor \frac{n}{a+b} \rfloorans=b=1ma=1b1[(a,b)=1]a+bn
=∑dmμ(d)∑b=1⌊md⌋∑a=1b−1⌊n(a+b)d2⌋=\sum_d^m \mu(d)\sum_{b=1}^{\lfloor \frac md \rfloor}\sum_{a=1}^{b-1}\lfloor \frac{n}{(a+b)d^2} \rfloor=dmμ(d)b=1dma=1b1(a+b)d2n
直接算就好了,复杂度什么的不存在的
code:

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<cmath>
#define LL long long
using namespace std;
bool v[100010];
LL prime[100010],pr=0,mu[100010];
void pre()
{
	memset(v,true,sizeof(v));
	mu[1]=1;
	for(LL i=2;i<=100000;i++)
	{
		if(v[i]) prime[++pr]=i,mu[i]=-1;
		for(LL j=1;j<=pr&&i*prime[j]<=100000;j++)
		{
			LL s=i*prime[j];v[s]=false;
			if(i%prime[j]==0) {mu[s]=0;break;}
			mu[s]=-mu[i];
		}
	}
}
LL n,m;
LL calc(LL n,LL m)
{
	LL ans=0;
	LL k;
	for(LL i=1;i<=m;i++)
	{
		LL t=n/i;
		for(LL j=i+1;j<(i<<1)&&j<=t;j=k+1)
		{
			k=min((i<<1)-1,t/(t/j));
			ans+=(k-j+1)*(t/j);
		}
	}
	return ans;
}
int main()
{
	pre();
	scanf("%lld",&n);m=sqrt(n);
	LL ans=0;
	for(LL i=1;i<=m;i++) if(mu[i]!=0) ans+=mu[i]*calc(n/i/i,m/i);
	printf("%lld",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值