自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(337)
  • 收藏
  • 关注

转载 注意力机制---Attention、local Attention、self Attention、Hierarchical attention

一、编码-解码架构目的:解决语音识别、机器翻译、知识问答等输出输入序列长度不相等的任务。C是输入的一个表达(representation),包含了输入序列的有效信息。它可能是一个向量,也可能是一个固定长度的向量序列;如果C是一个向量序列,则它和输入序列的区别在于:序列C是定长的、较短的;而输入序列是不定长的、较长的。二、注意力机制...

2019-09-20 11:00:00 726

转载 随机打乱数组算法、蓄水池算法

1.随机打乱数组(洗牌算法)  分析洗牌算法正确性的准则:产生的结果必须有 n! 种可能,否则就是错误的。这个很好解释,因为一个长度为 n 的数组的全排列就有 n! 种,也就是说打乱结果总共有 n! 种。算法必须能够反映这个事实,才是正确的。代码:def shuffleArr(arr): l = len(arr) for i in range(l): ...

2019-09-18 20:59:00 416

转载 算法---树的遍历

1.先序遍历(1)递归class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = Noneclass Solution: def preorderTraversal(self,root):...

2019-09-09 15:07:00 391

转载 博客园设置小tips

1.添加目录【1】https://www.cnblogs.com/clwydjgs/p/9415632.html2.修改图片大小<img src="图片地址" style="zoom:50%">转载于:https://www.cnblogs.com/nxf-rabbit75/p/11456500.html...

2019-09-03 23:46:00 217

转载 拉格朗日对偶性

在约束优化问题中,常常用拉格朗日对偶性来将原始问题转为对偶问题,通过解对偶问题的解来得到原始问题的解。1.为什么要利用对偶?首先要明确,对偶问题的解不一定直接等于原问题的解(弱对偶),但是对偶问题有两点性质:无论原始问题是否是凸的,对偶问题都是凸优化问题当Lagrange对偶问题的强对偶性成立时,可以利用求解对偶问题来求解原问题;而原问题是凸优化问题时,强对偶性往...

2019-09-03 15:33:00 362

转载 凸优化问题

一、无约束优化对于无约束的优化问题,直接令梯度等于0求解。如果一个函数$f$是凸函数,那么可以直接通过$f(x)$的梯度等于0来求得全局极小值点。二、有约束优化若$f(x),h(x),g(x)$三个函数都是线性函数,则该优化问题称为线性规划。若任意一个是非线性函数,则称为非线性规划。若目标函数为二次函数,约束条件全为线性函数,称为二次规划...

2019-09-03 14:40:00 780

转载 剑指offer刷题

数据结构类题目LinkedList003-从尾到头打印链表014-链表中倒数第k个结点015-反转链表016-合并两个或k个有序链表025-复杂链表的复制036-两个链表的第一个公共结点055-链表中环的入口结点056-删除链表中重复的结点Tree004-重建二叉树017-树的子结构018-二叉树的镜像022...

2019-08-22 23:41:00 111

转载 离散采样算法---Alias采样方法

应用场景:比如一个随机事件包含4种情况,每种情况发生的概率分别为:$\frac{1}{2},\frac{1}{3},\frac{1}{12},\frac{1}{12}$,怎么产生符合这个概率的采样方法?解决方法:Alias算法,O(1)参考链接:【1】中文:【数学】时间复杂度O(1)的离散采样算法—— Alias method/别名采样方法【2】英文:Darts, ...

2019-08-16 20:04:00 1100

转载 算法---图

一、图的基础知识1.连通图与非连通图  连通图(Connected Graphs)指图内任意两个节点间,总能找到一条路径连接它们,否则,为非连通图(Disconnected Graphs)。也就是说,如果图中包含岛(Island),则是非连通图。如果岛内的节点都是连通的,这些岛就被成为一个部件(Component,有时也叫 Cluster)。  有些图算法在非连通图上可能...

2019-08-15 18:01:00 177

转载 matplotlib---画等高线

contour - 绘制等高线mp.contour(x, y, z, 等高线条数,colors=颜色, linewidth=线宽)#等高线绘制contourf - 填充等高线mp.contourf(x, y, z, 等高线条数,cmap=颜色映射)# 等高线填充clabel - 标记等高线,向CS(由contour函数返回的matplotlib.conto...

2019-08-15 09:52:00 362

转载 基变换

一组基坐标系为:i=(1,0),j=(0,1),另一组基坐标系为:b1=(2,1),b2=(-1,1)如何在第一组基坐标系中表示在第二组坐标系上面变换后得到的坐标?问题(1)在第二组坐标系下的向量坐标为(-1,2),那么如何在第一组坐标系下表示在第2组基坐标下(-1,2)这个向量呢?问题(2)如果知道了在第二组基坐标下的向量在第一组基坐标系下的表示为(3...

2019-08-06 21:41:00 373

转载 GCN总结

一、GCN简介GNN模型主要研究图节点的表示(Graph Embedding),图边结构预测任务和图的分类问题,后两个任务也是基于Graph Embedding展开的。目前论文重点研究网络的可扩展性、动态性、加深网络。谱卷积有理论支持,但有时候会受到拉普拉斯算子的限制;而空间域卷积更加灵活,主要困难在于选择定量邻域上,没有统一理论。未来方向:加深网络: ...

2019-08-05 22:56:00 7195

转载 用 Splashtop Wired XDisplay HD 让 ipad做电脑扩展屏幕__亲测有效

参考:【1】https://blog.csdn.net/Tang_Chuanlin/article/details/86433152转载于:https://www.cnblogs.com/nxf-rabbit75/p/11298126.html

2019-08-04 14:22:00 17277

转载 深度学习优化方法

SGD >SGDM >NAG >AdaGrad >AdaDelta > RMSprop >Adam > AdaMax >Ndam > AMSGrad优化算法的框架:待优化参数:$w$,目标函数:$f(w)$,初始学习率$\alpha$每个epoch $t$:计算目标函数关于当前参数的梯度:$g_t ...

2019-08-01 16:35:00 535

转载 tf.nn.embedding_lookup()

tf.nn.embedding_lookup( params, ids, partition_strategy='mod', name=None, validate_indices=True, max_norm=None)功能:选取一个张量里面索引对应的行的向量TensorFlow链接:https:/...

2019-08-01 14:48:00 165

转载 tf.variable_scope()和tf.name_scope()

1.tf.variable_scope功能:tf.variable_scope可以让不同命名空间中的变量取相同的名字,无论tf.get_variable或者tf.Variable生成的变量TensorFlow链接:https://tensorflow.google.cn/api_docs/python/tf/variable_scope?hl=en举例:with tf...

2019-07-31 16:12:00 156

转载 tf.Variable()、tf.get_variable()和tf.placeholder()

1.tf.Variable()tf.Variable(initializer,name)功能:tf.Variable()创建变量时,name属性值允许重复,检查到相同名字的变量时,由自动别名机制创建不同的变量。参数:initializer:初始化参数;name:可自定义的变量名称举例:import tensorflow as tfv1=...

2019-07-31 15:01:00 499

转载 tf.gather_nd()

tf.gather_nd(  params,  indices,  name=None,  batch_dims=0)TensorFlow链接:https://tensorflow.google.cn/api_docs/python/tf/gather_nd?hl=en功能:将参数中的切片收集到由索引指定的形状的张量中.参数:params:张...

2019-07-31 14:45:00 225

转载 networkx

参考文献:【1】networkx整理【2】NetworkX官网【3】python3 networkx转载于:https://www.cnblogs.com/nxf-rabbit75/p/11271327.html

2019-07-30 17:12:00 96

转载 markdown公式编辑

参考文献:【1】使用Typora添加数学公式【2】github基本编写和格式化语法转载于:https://www.cnblogs.com/nxf-rabbit75/p/11252377.html

2019-07-26 19:31:00 82

转载 Graph Embedding总结

图嵌入应用场景:可用于推荐,节点分类,链接预测(link prediction),可视化等场景一、考虑网络结构1.DeepWalk (KDD 2014)(1)简介DeepWalk = Random Walk + Skip-gram论文链接作者:Bryan Perozzi, Rami Al-Rfou, Steven Skiena主要思想:假设邻域...

2019-07-26 14:42:00 1229

转载 沿着梯度的方向为什么是函数值增加最快的方向?

以二元函数为例,$f(x,y)$,对于任意单位方向$u$,假设$u$是$x$轴的夹角,那么函数$f(x,y)$在$u$这个方向上的变化率为:$f_x(x,y) \cos \alpha + f_y(x,y) \sin \alpha=\nabla f(x,y)^T\begin{pmatrix}f_x(x,y) \\ f_y(x,y)\end{pmatrix}=\nabla f(x,y)...

2019-07-24 19:29:00 1669

转载 sklearn---评价指标

查看sklearn支持的评价指标:import sklearnsorted(sklearn.metrics.SCORERS.keys())['accuracy', 'adjusted_mutual_info_score', 'adjusted_rand_score', 'average_precision', 'balanced_accurac...

2019-07-18 15:04:00 1402

转载 np.append()

1.numpy.append() np.append(arr,values,axis=None) 功能:在array后面追加values参数:arr:array_like 值将附加到此数组的副本。values:array_like这些值附加到`arr`的副本。 它必须是正确的形状(与`arr`形状相同,不包括`轴')。 如果没有指定`axis`...

2019-07-16 09:41:00 390

转载 jupyter配置成coding神器

参考链接:【1】http://resuly.me/2017/11/03/jupyter-config-for-windows/【2】主题更换切换主题:jt 主题名 -T主题种类:chesterish     grade3     monokai      oceans16     onedork      solarizedd...

2019-07-15 09:28:00 93

转载 json转dataframe格式

方法1:利用pandas自带的read_json直接解析字符串方法2:利用json的loads和pandas的json_normalize进行解析方法3:利用json的loads和pandas的DataFrame直接构造(这个过程需要手动修改loads得到的字典格式)path = '...'file = open(path,'r')all_json_data = ...

2019-07-14 17:41:00 1158

转载 部分依赖图

SHAP(SHapley Additive exPlanations)是一种统一的方法来解释任何机器学习模型的输出。SHAP将博弈论与局部解释联系起来,将以前的几种方法结合起来,并根据预期表示唯一可能的一致且局部准确的加法特征归因方法(详见SHAP NIPS论文)。部分依赖图显示了目标相应和一组特征之间的独立性,排除了其他所有的特征。直观的,可将部分依赖解释为预期的目标响应,和目...

2019-07-10 19:01:00 3099

转载 模型融合---为什么说bagging是减少variance,而boosting是减少bias?

1.bagging减少varianceBagging对样本重采样,对每一重采样得到的子样本集训练一个模型,最后取平均。由于子样本集的相似性以及使用的是同种模型,因此各模型有近似相等的bias和variance(事实上,各模型的分布也近似相同,但不独立),所以bagging后的bias和单个子模型的接近,一般来说不能显著降低bias。若各模型独立,则 若各模型完全相等,则此时不会降...

2019-07-10 16:51:00 291

转载 pandas知识点脑图汇总

参考文献:【1】Pandas知识点脑图汇总转载于:https://www.cnblogs.com/nxf-rabbit75/p/11157454.html

2019-07-09 15:06:00 243

转载 seaborn(2)---画分类图/分布图/回归图/矩阵图

二.分类图1. 分类散点图(1)散点图striplot(kind='strip')方法1:seaborn.stripplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, jitter=True, dodge=False, orient=None, color=None, palett...

2019-07-09 14:39:00 1189

转载 (1)探索性数据分析(EDA,Exploratory Data Analysis)

一、数据探索1.数据读取遍历文件夹,读取文件夹下各个文件的名字:os.listdir() 方法:用于返回指定的文件夹包含的文件或文件夹的名字的列表。这个列表以字母顺序。 它不包括 '.' 和'..' 即使它在文件夹中。1.1CSV格式数据详细说明(1)读取### python导入csv文件的4种方法# 1.原始的方式lines = [li...

2019-07-08 00:06:00 602

转载 (2)数据预处理方法

(一)数值特征数值特征(numerical feature),可以是连续的(continuous),也可以是离散的(discrete),一般表示为一个实数值。例:年龄、价格、身高、体重、测量数据。不同算法对于数值特征的处理要求不同。下文中的一些数据处理方法,因为是针对某一特征列的单调变换,所以不会对基于决策树的算法(随机森林、gbdt)产生任何影响。一般而言,决策树类算法不...

2019-07-06 10:53:00 1796

转载 (2.1)特征处理---连续型特征

一.查看变量的缺失值(missing value,空值)个数以及所占比例连续型数据探索二.画频数占比分布图,查看样本在该特征值上的分布根据连续变量的值域范围,将该变量分成10箱,就是分成10段,箱数可自由选择;统计每一箱内样本的频数占比:该箱内样本个数/总样本个数。然后将每一箱的频数比例画出来:sns.distplot(data,kde=True) ...

2019-07-06 09:18:00 1570

转载 (2.2)特征处理---类别型特征

123转载于:https://www.cnblogs.com/nxf-rabbit75/p/11153804.html

2019-07-05 20:58:00 217

转载 Python决策树可视化:GraphViz's executables not found的解决方法

参考文献:【1】Python决策树可视化:GraphViz's executables not found的解决方法转载于:https://www.cnblogs.com/nxf-rabbit75/p/11134508.html

2019-07-04 19:38:00 406

转载 pandas的pivot_table

参考文献:【1】pivot_table转载于:https://www.cnblogs.com/nxf-rabbit75/p/11130547.html

2019-07-04 09:48:00 86

转载 pandas的行列显示不全的解决方法

pd.set_option('display.max_rows', 100) # 显示的最大行数(避免只显示部分行数据)pd.set_option('display.max_columns', 1000) # 显示的最大列数(避免列显示不全)pd.set_option("display.max_colwidth",1000) # 每一列最大的宽度(避免属性值或列名显示不...

2019-07-03 18:59:00 490

转载 (3.1)特征选择---过滤法(特征相关性分析)

一、绘图判断一般对于强相关性的两个变量,画图就能定性判断是否相关散点图seaborn.scatterplot# 散点图矩阵初判多变量间关系data = pd.DataFrame(np.random.randn(200,4)*100, columns = ['A','B','C','D'])pd.plotting.scatter_matrix...

2019-07-02 18:36:00 20722

转载 (3.2)特征选择---包装法

1. 前向搜索  每次增量地从剩余未选中的特征选出一个加入特征集中,待达到阈值或者时,从所有的中选出错误率最小的。过程如下:初始化特征集为空。扫描从到如果第个特征不在中,那么特征和放在一起作为(即)。在只使用中特征的情况下,利用交叉验证来得到的错误率。从上步中得到的个中选出错误率最小的,更新为...

2019-07-01 18:45:00 1170

转载 seaborn---画热力图

1.引用形式:seaborn.heatmap(data, vmin=None, vmax=None, cmap=None, center=None, robust=False, annot=None, fmt='.2g', annot_kws=None, linewidths=0, linecolor='white', cbar=True, cbar_kws=None, cbar...

2019-07-01 17:32:00 897

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除