dili8870
码龄6年
  • 313,926
    被访问
  • 暂无
    原创
  • 954,725
    排名
  • 52
    粉丝
  • 0
    铁粉
关注
提问 私信
  • 加入CSDN时间: 2016-04-16
博客简介:

dili8870的博客

查看详细资料
个人成就
  • 获得118次点赞
  • 内容获得0次评论
  • 获得1,067次收藏
创作历程
  • 227篇
    2019年
  • 106篇
    2018年
  • 4篇
    2017年
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

随机打乱数组算法、蓄水池算法

1.随机打乱数组(洗牌算法)  分析洗牌算法正确性的准则:产生的结果必须有 n! 种可能,否则就是错误的。这个很好解释,因为一个长度为 n 的数组的全排列就有 n! 种,也就是说打乱结果总共有 n! 种。算法必须能够反映这个事实,才是正确的。代码:def shuffleArr(arr): l = len(arr) for i in range(l): ...
转载
发布博客 2019.09.18 ·
171 阅读 ·
0 点赞 ·
0 评论

博客园设置小tips

1.添加目录【1】https://www.cnblogs.com/clwydjgs/p/9415632.html2.修改图片大小<img src="图片地址" style="zoom:50%">转载于:https://www.cnblogs.com/nxf-rabbit75/p/11456500.html...
转载
发布博客 2019.09.03 ·
95 阅读 ·
0 点赞 ·
0 评论

注意力机制---Attention、local Attention、self Attention、Hierarchical attention

一、编码-解码架构目的:解决语音识别、机器翻译、知识问答等输出输入序列长度不相等的任务。C是输入的一个表达(representation),包含了输入序列的有效信息。它可能是一个向量,也可能是一个固定长度的向量序列;如果C是一个向量序列,则它和输入序列的区别在于:序列C是定长的、较短的;而输入序列是不定长的、较长的。二、注意力机制...
转载
发布博客 2019.09.20 ·
416 阅读 ·
0 点赞 ·
0 评论

凸优化问题

一、无约束优化对于无约束的优化问题,直接令梯度等于0求解。如果一个函数$f$是凸函数,那么可以直接通过$f(x)$的梯度等于0来求得全局极小值点。二、有约束优化若$f(x),h(x),g(x)$三个函数都是线性函数,则该优化问题称为线性规划。若任意一个是非线性函数,则称为非线性规划。若目标函数为二次函数,约束条件全为线性函数,称为二次规划...
转载
发布博客 2019.09.03 ·
599 阅读 ·
0 点赞 ·
0 评论

算法---树的遍历

1.先序遍历(1)递归class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = Noneclass Solution: def preorderTraversal(self,root):...
转载
发布博客 2019.09.09 ·
137 阅读 ·
0 点赞 ·
0 评论

离散采样算法---Alias采样方法

应用场景:比如一个随机事件包含4种情况,每种情况发生的概率分别为:$\frac{1}{2},\frac{1}{3},\frac{1}{12},\frac{1}{12}$,怎么产生符合这个概率的采样方法?解决方法:Alias算法,O(1)参考链接:【1】中文:【数学】时间复杂度O(1)的离散采样算法—— Alias method/别名采样方法【2】英文:Darts, ...
转载
发布博客 2019.08.16 ·
810 阅读 ·
0 点赞 ·
0 评论

拉格朗日对偶性

在约束优化问题中,常常用拉格朗日对偶性来将原始问题转为对偶问题,通过解对偶问题的解来得到原始问题的解。1.为什么要利用对偶?首先要明确,对偶问题的解不一定直接等于原问题的解(弱对偶),但是对偶问题有两点性质:无论原始问题是否是凸的,对偶问题都是凸优化问题当Lagrange对偶问题的强对偶性成立时,可以利用求解对偶问题来求解原问题;而原问题是凸优化问题时,强对偶性往...
转载
发布博客 2019.09.03 ·
173 阅读 ·
0 点赞 ·
0 评论

matplotlib---画等高线

contour - 绘制等高线mp.contour(x, y, z, 等高线条数,colors=颜色, linewidth=线宽)#等高线绘制contourf - 填充等高线mp.contourf(x, y, z, 等高线条数,cmap=颜色映射)# 等高线填充clabel - 标记等高线,向CS(由contour函数返回的matplotlib.conto...
转载
发布博客 2019.08.15 ·
213 阅读 ·
0 点赞 ·
0 评论

GCN总结

一、GCN简介GNN模型主要研究图节点的表示(Graph Embedding),图边结构预测任务和图的分类问题,后两个任务也是基于Graph Embedding展开的。目前论文重点研究网络的可扩展性、动态性、加深网络。谱卷积有理论支持,但有时候会受到拉普拉斯算子的限制;而空间域卷积更加灵活,主要困难在于选择定量邻域上,没有统一理论。未来方向:加深网络: ...
转载
发布博客 2019.08.05 ·
6193 阅读 ·
2 点赞 ·
0 评论

剑指offer刷题

数据结构类题目LinkedList003-从尾到头打印链表014-链表中倒数第k个结点015-反转链表016-合并两个或k个有序链表025-复杂链表的复制036-两个链表的第一个公共结点055-链表中环的入口结点056-删除链表中重复的结点Tree004-重建二叉树017-树的子结构018-二叉树的镜像022...
转载
发布博客 2019.08.22 ·
60 阅读 ·
0 点赞 ·
0 评论

深度学习优化方法

SGD >SGDM >NAG >AdaGrad >AdaDelta > RMSprop >Adam > AdaMax >Ndam > AMSGrad优化算法的框架:待优化参数:$w$,目标函数:$f(w)$,初始学习率$\alpha$每个epoch $t$:计算目标函数关于当前参数的梯度:$g_t ...
转载
发布博客 2019.08.01 ·
153 阅读 ·
0 点赞 ·
0 评论

算法---图

一、图的基础知识1.连通图与非连通图  连通图(Connected Graphs)指图内任意两个节点间,总能找到一条路径连接它们,否则,为非连通图(Disconnected Graphs)。也就是说,如果图中包含岛(Island),则是非连通图。如果岛内的节点都是连通的,这些岛就被成为一个部件(Component,有时也叫 Cluster)。  有些图算法在非连通图上可能...
转载
发布博客 2019.08.15 ·
95 阅读 ·
0 点赞 ·
0 评论

tf.variable_scope()和tf.name_scope()

1.tf.variable_scope功能:tf.variable_scope可以让不同命名空间中的变量取相同的名字,无论tf.get_variable或者tf.Variable生成的变量TensorFlow链接:https://tensorflow.google.cn/api_docs/python/tf/variable_scope?hl=en举例:with tf...
转载
发布博客 2019.07.31 ·
48 阅读 ·
0 点赞 ·
0 评论

基变换

一组基坐标系为:i=(1,0),j=(0,1),另一组基坐标系为:b1=(2,1),b2=(-1,1)如何在第一组基坐标系中表示在第二组坐标系上面变换后得到的坐标?问题(1)在第二组坐标系下的向量坐标为(-1,2),那么如何在第一组坐标系下表示在第2组基坐标下(-1,2)这个向量呢?问题(2)如果知道了在第二组基坐标下的向量在第一组基坐标系下的表示为(3...
转载
发布博客 2019.08.06 ·
218 阅读 ·
1 点赞 ·
0 评论

用 Splashtop Wired XDisplay HD 让 ipad做电脑扩展屏幕__亲测有效

参考:【1】https://blog.csdn.net/Tang_Chuanlin/article/details/86433152转载于:https://www.cnblogs.com/nxf-rabbit75/p/11298126.html
转载
发布博客 2019.08.04 ·
16396 阅读 ·
0 点赞 ·
0 评论

tf.gather_nd()

tf.gather_nd(  params,  indices,  name=None,  batch_dims=0)TensorFlow链接:https://tensorflow.google.cn/api_docs/python/tf/gather_nd?hl=en功能:将参数中的切片收集到由索引指定的形状的张量中.参数:params:张...
转载
发布博客 2019.07.31 ·
109 阅读 ·
0 点赞 ·
0 评论

tf.nn.embedding_lookup()

tf.nn.embedding_lookup( params, ids, partition_strategy='mod', name=None, validate_indices=True, max_norm=None)功能:选取一个张量里面索引对应的行的向量TensorFlow链接:https:/...
转载
发布博客 2019.08.01 ·
63 阅读 ·
0 点赞 ·
0 评论

Graph Embedding总结

图嵌入应用场景:可用于推荐,节点分类,链接预测(link prediction),可视化等场景一、考虑网络结构1.DeepWalk (KDD 2014)(1)简介DeepWalk = Random Walk + Skip-gram论文链接作者:Bryan Perozzi, Rami Al-Rfou, Steven Skiena主要思想:假设邻域...
转载
发布博客 2019.07.26 ·
998 阅读 ·
0 点赞 ·
0 评论

sklearn---评价指标

查看sklearn支持的评价指标:import sklearnsorted(sklearn.metrics.SCORERS.keys())['accuracy', 'adjusted_mutual_info_score', 'adjusted_rand_score', 'average_precision', 'balanced_accurac...
转载
发布博客 2019.07.18 ·
984 阅读 ·
0 点赞 ·
0 评论

tf.Variable()、tf.get_variable()和tf.placeholder()

1.tf.Variable()tf.Variable(initializer,name)功能:tf.Variable()创建变量时,name属性值允许重复,检查到相同名字的变量时,由自动别名机制创建不同的变量。参数:initializer:初始化参数;name:可自定义的变量名称举例:import tensorflow as tfv1=...
转载
发布博客 2019.07.31 ·
325 阅读 ·
0 点赞 ·
0 评论
加载更多