pandas取dataframe特定行/列

1. 按列取、按索引/行取、按特定行列取

import numpy as np
from pandas import DataFrame
import pandas as pd


df=DataFrame(np.arange(12).reshape((3,4)),index=['one','two','thr'],columns=list('abcd'))

df['a']#取a列
df[['a','b']]#取a、b列

#ix可以用数字索引,也可以用index和column索引
df.ix[0]#取第0行
df.ix[0:1]#取第0行
df.ix['one':'two']#取one、two行
df.ix[0:2,0]#取第0、1行,第0列
df.ix[0:1,'a']#取第0行,a列
df.ix[0:2,'a':'c']#取第0、1行,abc列
df.ix['one':'two','a':'c']#取one、two行,abc列
df.ix[0:2,0:1]#取第0、1行,第0列
df.ix[0:2,0:2]#取第0、1行,第0、1列

#loc只能通过index和columns来取,不能用数字
df.loc['one','a']#one行,a列
df.loc['one':'two','a']#one到two行,a列
df.loc['one':'two','a':'c']#one到two行,a到c列
df.loc['one':'two',['a','c']]#one到two行,ac列

#iloc只能用数字索引,不能用索引名
df.iloc[0:2]#前2行
df.iloc[0]#第0行
df.iloc[0:2,0:2]#0、1行,0、1列
df.iloc[[0,2],[1,2,3]]#第0、2行,1、2、3列

#iat取某个单值,只能数字索引
df.iat[1,1]#第1行,1列
#at取某个单值,只能index和columns索引
df.at['one','a']#one行,a列
 

2. 按条件取行

选取等于某些值的行记录 用 ==
df.loc[df[‘column_name’] == some_value]

选取某列是否是某一类型的数值 用 isin
df.loc[df[‘column_name’].isin(some_values)]

多种条件的选取 用 &
df.loc[(df[‘column’] == some_value) & df[‘other_column’].isin(some_values)]

选取不等于某些值的行记录 用 !=
df.loc[df[‘column_name’] != some_value]

isin返回一系列的数值,如果要选择不符合这个条件的数值使用~
df.loc[~df[‘column_name’].isin(some_values)] 

  

3. 取完之后替换

df = pd.DataFrame({"id": [25,53,15,47,52,54,45,9], "sex": list('mfmfmfmf'), 'score': [1.2, 2.3, 3.4, 4.5,6.4,5.7,5.6,4.3],"name":['daisy','tony','peter','tommy','ana','david','ken','jim']})

将男性(m)替换为1,女性(f)替换为0

方法1:

df.ix[df['sex']=='f','sex']=0
df.ix[df['sex']=='m','sex']=1

注:在上面的代码中,逗号后面的‘sex’起到固定列名的作用

  

方法2:

df.sex[df['sex']=='m']=1
df.sex[df['sex']=='f']=0

  

 

参考文献:

【1】pandas 根据列的值选取所有行

【2】pandas小技巧之--值替换

转载于:https://www.cnblogs.com/nxf-rabbit75/p/10105271.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值