场景文本检测
Yuki.Lemon
这个作者很懒,什么都没留下…
展开
-
(论文笔记)PSENet:Shape Robust Text Detection with Progressive Scale Expansion Network(CVPR2019)
问题描述:(a)原图(b)基于回归的方法,可以看到第2/3个文本实例错误划分为一个(c)基于语义分割的方法,蓝色相邻实例错误预测为一个(d)PSENet,可以很好地区分和检测相邻文本实例。动机:基于语义分割,预测shrunk后的文本区域,然后逐步扩大到正常大小,解决位置邻近的文本易互相包围的现象,同时可以检测曲文。方法:基于ResNet+FPN,将P2~P5...原创 2020-04-15 18:20:11 · 276 阅读 · 0 评论 -
【论文详解】(CTPN)Detecting Text in Natural Image with Connectionist Text Proposal Network
这篇论文是乔宇老师发表在ECCV2016的一篇文章,创新点在于:提出了文本可以看做一个由固定宽度的text proposals密集排列组成的序列,可以用Anchor来预测这些文本候选区域,最后将它们用文本线构造法连接成最后的文本区域。另外,还引入了一个双向LSTM来编码文本序列的上下文信息帮助预测。网络结构CTPN类似于Faster RCNN+LSTM,预测的是等宽的t...原创 2019-11-19 21:34:22 · 324 阅读 · 0 评论 -
Character Region Awareness for Text Detection 论文解读
字符+字符间的联系+弱监督解决长的/弯曲的/任意形状的文本提出单词(word)级别的标注缺少语义信息 高斯分布的概率图(文本边界不需要严格定义了)+弱监督训练方式【摘要+介绍】: word level的bbox在表达任意形状的文本时有限制,原因是: wordlevel的bbox在遇到弯曲/变形的/特别长的文本时,很难准确的包围文本框 因此,一个可...原创 2019-11-10 16:26:23 · 488 阅读 · 3 评论 -
【论文解读】Pixel-Anchor: A Fast Oriented Scene Text Detector with Combined Networks
Perface 最近比较好奇场景文本检测中Size较大、较长的文本行的检测问题,于是去调查了ICDAR2017MLT数据集检测结果,发现目前开源的最好结果是云从科技的“Pixel-Anchor”,竞赛结果达到了74.54%,小编非常好奇究竟是什么神仙操作能达到这么好的结果,于是找到论文原文打算一探究竟(虽然论文中MLT的结果只有68.1%,但IC2015达到了87.68%),强自有...原创 2019-10-24 21:05:06 · 379 阅读 · 0 评论