pybrain
Dillon2015
从事视频编码的相关研究。
邮箱:13141211944@163.com
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
pybrain学习教程(一):创建神经网络
通过pybrain创建神经网络很简单,通过buildNetwork方法即可创建: >>> from pybrain.tools.shortcuts import buildNetwork >>> net = buildNetwork(2, 3, 1) 三个参数分别表示2个输入神经元,3个隐藏层神经元,1个输出层神经元 创建后,默认会以随机数初始化这个神经网络,通过.activate(原创 2017-02-10 11:02:29 · 3656 阅读 · 0 评论 -
pybrain学习教程(二):创建数据集
pybrain有自己的数据集格式,包含数据和标签,pybrain.dataset包里含有各种数据格式,对于监督学习SupervisedDataSet是其数据集格式 >>> from pybrain.datasets import SupervisedDataSet >>> ds = SupervisedDataSet(2, 1) 在初始化时需要指定其大小,2表示输入数据是2维的,1表示标签原创 2017-02-10 11:18:45 · 2454 阅读 · 1 评论 -
pybrain学习教程(三):训练神经网络
通过pybrain创建的神经网络默认是以随机数初始化的,为了调整参数我们需要训练这个网络 pybrain提供trainers来训练神经网络,trainers接收创建的网络和训练集作为参数。 一个经典的训练方法是反向传播方法 >>> from pybrain.supervised.trainers import BackpropTrainer >>> net = buildNetwork原创 2017-02-10 11:33:15 · 1793 阅读 · 0 评论 -
AttributeError: 'SupervisedDataSet' object has no attribute '_convertToOneOfMany'
使用pybrain构造神经网络,在执行官网代码时出错: means = [(-1,0),(2,4),(3,1)] cov = [diag([1,1]), diag([0.5,1.2]), diag([1.5,0.7])] alldata = ClassificationDataSet(2, 1, nb_classes=3) for n in xrange(400): for klass原创 2017-03-11 22:40:43 · 2093 阅读 · 0 评论
分享