Seq2Seq英法文one-hot代码研究

input_texts 代表每句英文,存储形式(数组)如  

['Go.', 'Hi.', 'Run!', 'Run!', 'Wow!', 'Fire!',...,, 'Help me, please.']

 

input_characters 代表英文中的每个字符,存储形式(集合)如  

{'V', "'", 'e', 'I', ' ', 'a', 'G', 'U', '9', 'g', 'n', 'h', '$', 'y', 'M', 'R', 'c', 'f', 'l', 'o', ':', 'm', 'F', 'w', 'z', '5', 'S', '%', 'k', '&', 'L', 'r', 'A', 'D', 'p', 'C', ',', 'K', 'x', '0', 's', 'J', '!', 'O', 'B', 'E', 't', 'H', '-', 'i', 'N', 'Q', '7', 'v', 'b', 'T', 'd', 'q', '8', 'j', 'P', '1', 'Y', 'u', '3', '6', '?', 'W', '.'}

 

output_text 代表每句法文,存在存储形式(数组)如  

['\tVa !\n', '\tSalut !\n', '\tCours\u202f!\n', '\tCourez\u202f!\n',...,, "\tAide-moi, s'il te plait.\n"]

 

output_characters 代表法文中的每个字符,存储形式(集合)如  

{'\xa0', 'J', 'z', ')', 'P', 'o', '0', '?', 'l', 'I', 'e', '&', '1', 'É', '.', 'O', 'g', 's', 'b', '$', '3', ',', 'a', 'U', 'h', 'c', 'C', 'ï', '\t', '\u202f', 'é', 'T', 'à', 'E', 'Ê', 'î', 'R', 'À', 'x', 'Ç', 'V', "'", 'K', 'B', 'y', 'œ', 'r', 'i', 'L', 'j', 'ë', '«', '\n', '9', 'ù', '8', 'G', 'H', 'd', '’', 'â', 'A', '%', 'w', 't', '5', 'f', '»', 'è', 'ê', 'p', 'F', 'Q', 'm', 'N', ':', '-', 'û', 'ç', 'n', 'D', 'ô', '\u2009', 'k', 'Y', 'S', 'q', '!', ' ', 'u', 'v', 'M', '('}

 

所有数据的情况如下图

 

数据集可以从   http://www.manythings.org/anki/fra-eng.zip   进行下载

训练模型的代码如下,生成.h5格式的代码,其中  s2s.h5  我没有使用

注意,此处我生成了两个模型并进行了保存,encoder_model.h5 和 decoder_model.h5

训练代数最好不要改,epoch=100在我的电脑上需要等待一段时间,但最终预测的效果很好,减少代数可能结果变差。

# -*- coding: utf-8 -*-
from keras.models import Model
from keras.layers import Input, LSTM, Dense
import numpy as np

batch_size = 64  # Batch size for training.
epochs = 100  # Number of epochs to train for.
latent_dim = 256  # Latent dimensionality of the encoding space.隐含层
num_samples = 10000  # Number of samples to train on.样本总数
# Path to the data txt file on disk.
data_path = 'fra.txt'

# Vectorize the data.
input_texts = []
target_texts = []
input_characters = set()
target_characters = set()

with open(data_path, 'r', encoding='utf-8') as f:
    lines = f.read().split('\n')#以回车划分每行
for line in lines[: min(num_samples, len(lines) - 1)]:
    input_text, target_text = line.split('\t')#以tab划分英法文
    # We use "tab" as the "start sequence" character
    # for the targets, and "\n" as "end sequence" character.
    target_text = '\t' + target_text + '\n'#对于法文输出,以\t为开始,以\n为结束
    input_texts.append(input_text)
    target_texts.append(target_text)
    for char in input_text:
        if char not in input_characters:
            input_characters.add(char)
    for char in target_text:
        if char not in target_characters:
            target_characters.add(char)

input_characters = sorted(list(input_characters))
target_characters = sorted(list(target_characters))
num_encoder_tokens = len(input_characters)
num_decoder_tokens = len(target_characters)
max_encoder_seq_length = max([len(txt) for txt in input_texts])
max_decoder_seq_length = max([len(txt) for txt in target_texts])

# print('Number of samples:', len(input_texts))#10000
# print('Number of unique input tokens:', num_encoder_tokens)#69
# print('Number of unique output tokens:', num_decoder_tokens)#93
# print('Max sequence length for inputs:', max_encoder_seq_length)#16
# print('Max sequence length for outputs:', max_decoder_seq_length)#59


# 建立 字符->数字 字典,用于字符的向量化
input_token_index = dict(
    [(char, i) for i, char in enumerate(input_characters)])#给输入的每个字符标索引,从0~68

target_token_index = dict(
    [(char, i) for i, char in enumerate(target_characters)])##给输出的每个字符标索引,从0~92
# 创建数组 
encoder_input_data = np.zeros(
    (len(input_texts), max_encoder_seq_length, num_encoder_tokens),#(10000, 16, 69)
    dtype='float32')
decoder_input_data = np.zeros(
    (len(input_texts), max_decoder_seq_length, num_decoder_tokens),#(10000, 59, 93)
    dtype='float32')
decoder_target_data = np.zeros(
    (len(input_texts), max_decoder_seq_length, num_decoder_tokens),#(10000, 59, 93)
    dtype='float32')
# 填充数据, 对每一个字符做one-hot
for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)):
    # 对编码器的输入序列做one-hot
    for t, char in enumerate(input_text):
        encoder_input_data[i, t, input_token_index[char]] = 1.
    # 对解码器的输入与输出做序列做one-hot
    for t, char in enumerate(target_text):
        # decoder_target_data is ahead of decoder_input_data by one timestep
        decoder_input_data[i, t, target_token_index[char]] = 1.
        if t > 0:
            # decoder_target_data 不包含开始字符,并且比decoder_input_data提前一步
            decoder_target_data[i, t - 1, target_token_index[char]] = 1.
            #print(decoder_target_data.shape)#(10000, 59, 93)

# 定义编码器的输入
# encoder_inputs (None, num_encoder_tokens), None表示可以处理任意长度的序列#69
encoder_inputs = Input(shape=(None, num_encoder_tokens))
# 编码器,要求其返回状态
encoder = LSTM(latent_dim, return_state=True)#256
# 调用编码器,得到编码器的输出(输入其实不需要),以及状态信息 state_h 和 state_c
encoder_outputs, state_h, state_c = encoder(encoder_inputs)
# 丢弃encoder_outputs, 我们只需要编码器的状态
encoder_states = [state_h, state_c]

# 定义解码器的输入
# 同样的,None表示可以处理任意长度的序列
decoder_inputs = Input(shape=(None, num_decoder_tokens))
# 接下来建立解码器,解码器将返回整个输出序列
# 并且返回其中间状态,中间状态在训练阶段不会用到,但是在推理阶段将是有用的
decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
# 将编码器输出的状态作为初始解码器的初始状态
decoder_outputs, _, _ = decoder_lstm(decoder_inputs,
                                     initial_state=encoder_states)
# 添加全连接层
decoder_dense = Dense(num_decoder_tokens, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)

# 定义整个模型
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)

# Run training
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
model.fit([encoder_input_data, decoder_input_data], decoder_target_data,
          batch_size=batch_size,
          epochs=epochs,
          validation_split=0.2)
# Save model
model.save('s2s.h5')

# Next: inference mode (sampling).
# Here's the drill:
# 1) encode input and retrieve initial decoder state
# 2) run one step of decoder with this initial state
# and a "start of sequence" token as target.
# Output will be the next target token
# 3) Repeat with the current target token and current states

# Define sampling models
encoder_model = Model(encoder_inputs, encoder_states)

encoder_model.save('encoder_model.h5')

decoder_state_input_h = Input(shape=(latent_dim,))
decoder_state_input_c = Input(shape=(latent_dim,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_outputs, state_h, state_c = decoder_lstm(
    decoder_inputs, initial_state=decoder_states_inputs)
decoder_states = [state_h, state_c]
decoder_outputs = decoder_dense(decoder_outputs)

decoder_model = Model(
    [decoder_inputs] + decoder_states_inputs,
    [decoder_outputs] + decoder_states)
decoder_model.save('decoder_model.h5')

 

两个.h5文件为存储到的模型

 

预测阶段的代码如下所示,只需要调用刚才需要的两个模型便可进行预测。

 

# -*- coding: utf-8 -*-
from keras.models import Model
from keras.layers import Input, LSTM, Dense
import numpy as np
from keras.models import load_model
# Next: inference mode (sampling).
# Here's the drill:
# 1) encode input and retrieve initial decoder state
# 2) run one step of decoder with this initial state
# and a "start of sequence" token as target.
# Output will be the next target token
# 3) Repeat with the current target token and current states

# Define sampling models
batch_size = 64  # Batch size for training.
epochs = 100  # Number of epochs to train for.
latent_dim = 256  # Latent dimensionality of the encoding space.
num_samples = 10000  # Number of samples to train on.
# Path to the data txt file on disk.
data_path = 'fra.txt'

# Vectorize the data.
input_texts = []
target_texts = []
input_characters = set()
target_characters = set()

with open(data_path, 'r', encoding='utf-8') as f:
    lines = f.read().split('\n')#以回车划分每行
for line in lines[: min(num_samples, len(lines) - 1)]:
    input_text, target_text = line.split('\t')#以tab划分英法文
    # We use "tab" as the "start sequence" character
    # for the targets, and "\n" as "end sequence" character.
    target_text = '\t' + target_text + '\n'#对于法文输出,以\t为开始,以\n为结束
    input_texts.append(input_text)
    target_texts.append(target_text)
    for char in input_text:
        if char not in input_characters:
            input_characters.add(char)
    for char in target_text:
        if char not in target_characters:
            target_characters.add(char)

input_characters = sorted(list(input_characters))
target_characters = sorted(list(target_characters))
num_encoder_tokens = len(input_characters)
num_decoder_tokens = len(target_characters)
max_encoder_seq_length = max([len(txt) for txt in input_texts])
max_decoder_seq_length = max([len(txt) for txt in target_texts])

# print('Number of samples:', len(input_texts))#10000
# print('Number of unique input tokens:', num_encoder_tokens)#69
# print('Number of unique output tokens:', num_decoder_tokens)#93
# print('Max sequence length for inputs:', max_encoder_seq_length)#16
# print('Max sequence length for outputs:', max_decoder_seq_length)#59


# 建立 字符->数字 字典,用于字符的向量化
input_token_index = dict(
    [(char, i) for i, char in enumerate(input_characters)])#给输入的每个字符标索引,从0~68

target_token_index = dict(
    [(char, i) for i, char in enumerate(target_characters)])##给输出的每个字符标索引,从0~92
# 创建数组 
encoder_input_data = np.zeros(
    (len(input_texts), max_encoder_seq_length, num_encoder_tokens),#(10000, 16, 69)
    dtype='float32')
decoder_input_data = np.zeros(
    (len(input_texts), max_decoder_seq_length, num_decoder_tokens),#(10000, 59, 93)
    dtype='float32')
decoder_target_data = np.zeros(
    (len(input_texts), max_decoder_seq_length, num_decoder_tokens),#(10000, 59, 93)
    dtype='float32')
# 填充数据, 对每一个字符做one-hot
for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)):
    # 对编码器的输入序列做one-hot
    for t, char in enumerate(input_text):
        encoder_input_data[i, t, input_token_index[char]] = 1.
    # 对解码器的输入与输出做序列做one-hot
    for t, char in enumerate(target_text):
        # decoder_target_data is ahead of decoder_input_data by one timestep
        decoder_input_data[i, t, target_token_index[char]] = 1.
        if t > 0:
            # decoder_target_data 不包含开始字符,并且比decoder_input_data提前一步
            decoder_target_data[i, t - 1, target_token_index[char]] = 1.
            #print(decoder_target_data.shape)#(10000, 59, 93)




encoder_model = load_model('encoder_model.h5')

decoder_model = load_model('decoder_model.h5')


# Reverse-lookup token index to decode sequences back to
# something readable.
reverse_input_char_index = dict(
    (i, char) for char, i in input_token_index.items())
reverse_target_char_index = dict(
    (i, char) for char, i in target_token_index.items())


def decode_sequence(input_seq):
    # Encode the input as state vectors.
    states_value = encoder_model.predict(input_seq)

    # Generate empty target sequence of length 1.
    target_seq = np.zeros((1, 1, num_decoder_tokens))
    # Populate the first character of target sequence with the start character.
    target_seq[0, 0, target_token_index['\t']] = 1.

    # Sampling loop for a batch of sequences
    # (to simplify, here we assume a batch of size 1).
    stop_condition = False
    decoded_sentence = ''
    while not stop_condition:
        output_tokens, h, c = decoder_model.predict(
            [target_seq] + states_value)

        # Sample a token
        sampled_token_index = np.argmax(output_tokens[0, -1, :])
        sampled_char = reverse_target_char_index[sampled_token_index]
        decoded_sentence += sampled_char

        # Exit condition: either hit max length
        # or find stop character.
        if (sampled_char == '\n' or
           len(decoded_sentence) > max_decoder_seq_length):
            stop_condition = True

        # Update the target sequence (of length 1).
        target_seq = np.zeros((1, 1, num_decoder_tokens))
        target_seq[0, 0, sampled_token_index] = 1.

        # Update states
        states_value = [h, c]

    return decoded_sentence


for seq_index in range(10):
    # Take one sequence (part of the training set)
    # for trying out decoding.
    input_seq = encoder_input_data[seq_index: seq_index + 1]
    decoded_sentence = decode_sequence(input_seq)
    print('-')
    print('Input sentence:', input_texts[seq_index])
    print('Decoded sentence:', decoded_sentence)

  

我只打印两个结果,效果还行!

 

转载于:https://www.cnblogs.com/beautifulchenxi/p/11396119.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值