概率问题分析

  1.考虑一个日常的问题,考英语时有很多道选择题(orz),假设每个选择题共4个选项且只有1个正确答案,答对一题得5分,答错扣1分,不答没有分,由于本英语渣根本不会做,于是考虑不答还是随便答哪个更好,求随机选择的期望。

  分析:

    (1)不答题没有分,记期望为0;

    (2)有以下两种情况,设答对的概率为A:

$$ X_A=\left\{\begin{gathered} \frac{1}{4} & A(答对) \\ \frac{3}{4} & 1-A (答错) \end{gathered} \right. $$

  于是答题的期望为:

$$ E(X_A) = 5 \cdot P(A) + (-1) \cdot P(1-A) = 0.5 $$

  所以,这种情况下,随机答题比不答题可能好一些。。。

  2.生日悖论

  问题描述:一个屋子里人数必须要达到多少人,使至少有一对生日相同的期望为1?

  分析:我们使用整数1,2,3,...,k对屋子里的人编号,k为总人数。另假设所有的年份都有n=365天。对于i=1,2,3,...,k,设bi表示编号为i的人的生日,其中1≤bi≤n。还假设生日均匀分布在一年的n天中,因此对i=1,2,...,k和r=1,2,...,n,有:

$$ P(b_i=r)=\frac{1}{n} $$

  两个人i和j的生日正好相同的概率依赖于生日的随机选择是否独立。从现在开始,假设生日是独立的,于是i和j的生日都落在同一日r上的概率为:

$$ P(b_i=r \cap b_j=r)=P(b_i=r) \cdot P(b_j=r)=\frac{1}{n^2} $$

  这样,他们的生日是同一天的概率为(注意与上式描述的区别):

$$ P(b_i=b_j)=\sum_{r=1}^n P(b_i=r \cap b_j=r)=\sum_{r=1}^n \frac{1}{n^2}=\frac{1}{n} \quad (1)$$

  采用指示器随机变量来进一步探讨:

  对屋子里k个人中的每一对(i,j),对1≤i<j≤k,定义指示器随机变量Xij如下:

$$ X_{ij}=\left\{\begin{gathered} 1 & b_i=b_j \\ 0 & b_i \neq b_j \end{gathered} \right. $$

  结合(1)式,有

$$ E(X_{ij})=P(b_i=b_j)=\frac{1}{n} $$

  设X表示计数生日相同两人对数目的随机变量,我们有:

$$ X = \sum_{i=1}^k\sum_{j=i+1}^kX_{ij} $$

  两边取期望,并应用期望的线性性质,得到:

$$ E(X)=E(\sum_{i=1}^k\sum_{j=i+1}^kX_{ij})=\sum_{i=1}^k\sum_{j=i+1}^kE(X_{ij})=\binom{k}{2} \frac{1}{n}=\frac{k(k-1)}{2n} $$

  当k(k-1)≥2n时,生日相同的两人对的期望数至少是1。且当n=365,取k=28,则生日相同人对数目的期望值为1.0356,即至少需要28人,我们可以期望找到至少一对生日相同的人。如果在火星上,n=669,则至少需要38个火星人~是不是非常不可思议?原来和别人生日相同的概率这么高?

转载于:https://www.cnblogs.com/darkchii/p/9170713.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值