二维傅里叶变换

本文探讨了二维傅里叶变换的两种实现方法:一是将问题拆分为两个一维傅里叶变换;二是直接利用二维傅里叶变换的数学公式进行计算。这两种方法有助于理解和应用傅里叶变换在图像处理等领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二维傅里叶变换
第一种做法是拆成一维的做。

#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
const int N  = 1000;
const double PI = acos(-1);
int a[N][N], b[N][N], c[N][N], fftc[N][N];
int vec_a[N * N], vec_b[N * N], vec_c[N * N];


struct complex
{
    double r,i;
    complex(double _r = 0.0,double _i = 0.0)
    {
        r = _r; i = _i;
    }
    complex operator +(const complex &b)
    {
        return complex(r+b.r,i+b.i);
    }
    complex operator -(const complex &b)
    {
        return complex(r-b.r,i-b.i);
    }
    complex operator *(const complex &b)
    {
        return complex(r*b.r-i*b.i,r*b.i+i*b.r);
    }
}A[N*N],B[N*N];

void change(complex y[],int len)
{
    int i,j,k;
    for(i = 1, j = len/2;i < len-1; i++)
    {
        if(i < j)swap(y[i],y[j]);
        k = len/2;
        while( j >= k)
        {
            j -= k;
            k /= 2;
        }
        if(j < k) j += k;
    }
}

void FFT(complex y[],int len,int on)
{
    change(y,len);
    for(int h = 2; h <= len; h <<= 1)
    {
        complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
        for(int j = 0;j < len;j+=h)
        {
            complex w(1,0);
            for(int k = j;k < j+h/2;k++)
            {
                complex u = y[k];
                complex t = w*y[k+h/2];
                y[k] = u+t;
                y[k+h/2] = u-t;
                w = w*wn;
            }
        }
    }
    if(on == -1)
        for(int i = 0;i < len;i++)
            y[i].r /= len;
}
int main()
{
    //freopen("../in.txt", "r", stdin);
    int n, m, fn, fm, T;
    cin >> T;
    while(T--) {
        cin >> n >> m;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                cin >> a[i][j];
            }
        }
        cin >> fn >> fm;
        for (int i = 0; i < fn; i++) {
            for (int j = 0; j < fm; j++) {
                cin >> b[i][j];
            }
        }
        if(n == 0 || m == 0 || fn == 0 || fm == 0) continue;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (i + fn - 1 >= n || j + fm - 1 >= m) continue;
                int sum = 0;
                for (int x = 0; x < fn; x++) {
                    for (int y = 0; y < fm; y++) {
                        sum += a[i + x][j + y] * b[x][y];
                    }
                }
                c[i][j] = sum;
            }
        }
        for (int i = 0; i <= n - fn; i++) {
            for (int j = 0; j <= m - fm; j++) {
                cout << c[i][j] << " ";
            }
            cout << endl;
        }
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                vec_a[i * m + j] = a[i][j];
                vec_b[i * m + j] = 0;
            }
        }
        for (int i = 0; i < fn; i++) {
            for (int j = 0; j < fm; j++) {
                vec_b[i * m + j] = b[i][j];
            }
        }
        for (int i = 0; i < n * m; i++) A[i] = complex(vec_a[i], 0);
        reverse(vec_b, vec_b + n * m);
        for (
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值