flink
文章平均质量分 86
永远不要矫情
这个作者很懒,什么都没留下…
展开
-
Flink整合Yarn与Kafka
文章目录 1.Flink 整合 YARN1.1yarn-session1.2yarn-cluster1.3Flink On YARN故障恢复 2.Flink整合Kafka 1.Flink 整合 YARN Flink支持多种运行模式:本地Local模式,StandAlone模式,YARN模式,Mesos模式,Kubenetes 模式,Cloud 模式。其中本地模式是用来开发和调试的,YARN 模式是很多公司采用的。在一个企业...转载 2021-06-18 14:39:43 · 634 阅读 · 0 评论 -
Flink反压机制
在说flink的反压之前,先来说下strom和spark streaming的反压。 Strom 反压 如图是strom的反压,是通过zookeeper来决定的,当strom感受到处理不过来的时候,就会像zookeeper增加一个znode,然后strom发现了这个znode,对应的上游数据就会阻塞,不会发送数据。 Spark Streaming 反压 Spark Streaming的反压是从1.5版本...转载 2021-04-11 08:19:50 · 149 阅读 · 0 评论 -
Flink之JobManager和 TaskManager
1.什么是FlinkFlink是由Apache开发的开源分布式流处理框架,其核心是用Java和Scala编写的分布式流数据流引擎。Flink可以执行批处理和流处理程序,Flink 将批处理(即处理有限的静态数据)视作一种特殊的流处理。2.流处理在自然环境中,数据的产生原本就是流式的。无论是来自 Web 服务器的事件数据,证券交易所的交易数据,还是来自工厂车间机器上的传感器数据,其数据都是流式的。但是当你分析数据时,可以围绕 有界流(bounded)或 无界流(unbounded)两种模型来组织处理数据原创 2021-03-25 20:07:03 · 11745 阅读 · 1 评论 -
Flink之checkpoint和savepoint的区别
1.什么是CheckpointCheckpoint:一种由 Flink 自动执行的快照,其目的是能够从故障中恢复。Checkpoint 使 Flink 的状态具有良好的容错性,通过 checkpoint 机制,Flink 可以对作业的状态和计算位置进行恢复。Checkpoint 对于用户层面,是透明的,用户会感觉程序一直在运行。 用户无法对其进行交互,用户可以在程序启动之前,设置好实时程序 Checkpoint 相关参数,当程序启动之后,剩下的就全交给 Flink 自行管理。(1)checkpoint原创 2021-03-23 15:22:36 · 4255 阅读 · 1 评论 -
Flink之state的简单理解
1.State: 即为状态,状态是计算过程中的数据信息,包括计算中间结果和元数据信息等等。状态在容错恢复,flink的增量计算等方面起着重要的地位。在Flink中,State中主要分为Operator State以及KeyedState。每种类型的state都可以以两种形式存在原生状态(raw state)和托管状态(managed state)。推荐使用ManagedState管理状态数据Operator State:是和Operator的一个特定的并行实例相绑定的,task级别的state,每个原创 2021-03-25 15:16:33 · 591 阅读 · 0 评论