【基本算法】 位运算:二进制状态压缩

二进制状态压缩

二进制状态压缩,是指将一个n位的 bool 数组用 n 位的二进制数表示的方法。

OP运算
取出 n 在二进制表示下的第k位(n >> k) & 1
取出 n 在二进制表示下的0~ k-1 位(后k位)n & ((1<<k) - 1)
把整数n在二进制表现下的第k位取反n xor (1 << k)
把整数n在二进制表现下的第k位赋值1n | (1 << k)
把整数n在二进制表现下的第k位赋值0n & (~(1 << k))

注:Markdown表格中的 " | " 使用 &#124; 来表示;

我们以13 (1101)为例,看一下位运算的实现过程

1. 取出第k位: (n >> k) & 1

k3210
n1101

需要注意的是:k的取值是从0开始的,并且位数是按照从右到左的顺序计算;

2. 取出后k位:n & ((1 << k) - 1)

k4321
n1101

为什么这次k对应的是从1开始的呢?
我们来对照一下 (1 << k) / (1 << k) - 1 的结果

k4321
(1 << k)10000100010010
(1 << k) - 11111111111
n & ((1 << k) - 1)1101101011
n13511

3. 第k位取反 n xor (1 << k)

k3210
n xor (1 << k)0101100111111100

这个的原理其实很简单,1 << k 位后,那么 (k+1) 位为1,其他都是0.
n xor (1 << k) 只会有4种情况

运算结果
0 xor 11
1 xor 10
1 xor 01
0 xor 00

无论0还是1,异或1都是取反,异或0不变

4. 第k位赋值1
原理同上, 无论什么数 “|1” 都是 1,所以将1 << k 位后,与n或运算,都可以使其为1;

k3210
n | (1 << k)1101110111111101

5. 第k位赋值0
~(1 << k) 这个操作可以使 第k位 = 0, 从0 ~ (k-1)位都为1.
任何数 & 1 都保持不变,第k位 & 0 赋值为 0;

k3210
n & (~(1 << k))0101100111011100

例题:最短 Hamilton 路径

题目描述

给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径。 Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次。
In

第一行一个整数n。
接下来n行每行n个整数,其中第i行第j个整数表示点i到j的距离(一个不超过10^7的正整数,记为a[i,j])。
对于任意的x,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]>=a[x,z]。
Out

一个整数,表示最短Hamilton路径的长度。

Input

4
0 2 1 3
2 0 2 1
1 2 0 1
3 1 1 0
Output

4

Hint

从0到3的Hamilton路径有两条,0-1-2-3和0-2-1-3。前者的长度为2+2+1=5,后者的长度为1+2+1=4


这是一道经典的状压DP题,作为一个NP完全问题,我们只关心两个问题

  1. 哪些点被用过
  2. 目前停在哪里

我们使用一个n位的二进制数,若其第 i 位为 1 ,则表示第 i 个点已经被经过
使用 F[ i , j ] 来表示,当前经过状态state , 和目前在第 j 个点上
起点 F[ 1 , 0 ] = 0 最终目标 F[ (1<<n)-1 , n-1] 所有点都被访问到,且当前处于 n-1;
状态转移方程 F[ i , j ] = min { F [ i xor (1 << j ) , k) ] + weight( k , j ) }

AC代码

#include <bits/stdc++.h>
using namespace std;

const int N = 20 , M = 1<<20;
int n;
int f[M][N], weight[N][N];

int main()
{
    cin >> n;
    for(int i = 0;i < n; i++)
        for(int j = 0;j < n; j++)
            cin >> weight[i][j];
            
    memset(f,0x3f,sizeof f);
    f[1][0] = 0;                  //第一个点不需要费用
    
    for(int i = 0;i < 1<<n; i++)  //状态
        for(int j = 0;j < n; j++) // 走到第j个点
            if( i >> j & 1)       //到达过第j个点
                for(int k = 0; k < n;k++)                                  //枚举能到达j的所有k个点
                    if( (i^1<<j)>>k & 1)                                  //如果没有走到j,并且当前是k
                        f[i][j] = min(f[i][j], f[i^1<<j][k]+weight[k][j]); //选择最小值,k点到j点最优,还是以前的方案最优
    
    cout << f[(1<<n)-1][n-1]<<endl; //最终到达
}

转载于:https://www.cnblogs.com/Coder-L/p/11006361.html

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值