P1155 双栈排序

题目描述

Tom最近在研究一个有趣的排序问题。如图所示,通过2个栈S1和S2,Tom希望借助以下4种操作实现将输入序列升序排序。

操作a

如果输入序列不为空,将第一个元素压入栈S1

操作b

如果栈S1不为空,将S1栈顶元素弹出至输出序列

操作c

如果输入序列不为空,将第一个元素压入栈S2​

操作d

如果栈S2​不为空,将S2栈顶元素弹出至输出序列

如果一个1−n的排列P可以通过一系列操作使得输出序列为1,2,…,(n−1),Tom就称P是一个“可双栈排序排列”。例如(1,3,2,4)就是一个“可双栈排序序列”,而(2,3,4,1)不是。下图描述了一个将(1,3,2,4)排序的操作序列:<a,c,c,b,a,d,d,b>

当然,这样的操作序列有可能有几个,对于上例(1,3,2,4),<a,c,c,b,a,d,d,b>是另外一个可行的操作序列。Tom希望知道其中字典序最小的操作序列是什么。

输入格式

第一行是一个整数n。

第二行有n个用空格隔开的正整数,构成一个1−n的排列。

输出格式

共一行,如果输入的排列不是“可双栈排序排列”,输出数字0;否则输出字典序最小的操作序列,每两个操作之间用空格隔开,行尾没有空格。

输入输出样例

输入 #1
4
1 3 2 4
输出 #1
a b a a b b a b
输入 #2
4
2 3 4 1
输出 #2
0
输入 #3
3
2 3 1
输出 #3
a c a b b d

说明/提示

30%的数据满足: n≤10

50%的数据满足:n≤50

100%的数据满足: n≤1000

思路

一个简单的递推算法。

这个题目其实不需要二分图,也不需要搜索。

只要思考如果能够排序,元素需要满足什么性质,然后贪心地向A栈添加即可。

Orz

代码

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;

const int N=1010;

char ans[2*N];
int in[N],a[N],b[N];
int ad,bd,k,n,cnt,asd;

bool check(int k) {
	if(!bd)
		return 1;
	int i,j;
	for(i=k+1; i<=n; i++)
		if(in[i]>in[k]&&in[i]>b[bd])
			break;
	for(j=i+1; j<=n; j++)
		if(in[j]<in[k])
			return false;
	return true;
}

int main () {
	bool able=1;
	int at=1;
	scanf("%d",&n);
	a[0]=b[0]=1e4,asd=1;
	for(int i=1; i<=n; i++)
		scanf("%d",&in[i]);
	for(int i=1; i<=(n<<1); i++) {
		if(a[ad]==asd) {
			ad--;
			asd++;
			ans[++cnt]='b';
			continue;
		}
		if(b[bd]==asd) {
			bd--;
			asd++;
			ans[++cnt]='d';
			continue;
		}
		if(at<=n&&in[at]<a[ad]&&check(at)) {
			a[++ad]=in[at];
			ans[++cnt]='a';
			at++;
			continue;
		}
		if(at<=n&&in[at]<b[bd]) {
			b[++bd]=in[at];
			ans[++cnt]='c';
			at++;
			continue;
		}
		able=0;
		break;
	}
	if(able)
		for(int i=1; i<=cnt; i++)
			putchar(ans[i]),putchar(' ');
	else
		printf("0");
	printf("\n");
	return 0;
}

 

转载于:https://www.cnblogs.com/mysh/p/11449468.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值