科技老丁哥
码龄14年
关注
提问 私信
  • 博客:101,313
    101,313
    总访问量
  • 69
    原创
  • 1,411,809
    排名
  • 163
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2010-10-06
博客简介:

【科技老丁哥】的博客

查看详细资料
个人成就
  • 获得84次点赞
  • 内容获得36次评论
  • 获得451次收藏
  • 代码片获得926次分享
创作历程
  • 4篇
    2019年
  • 65篇
    2018年
成就勋章
TA的专栏
  • 【火炉炼AI】之机器学习
    32篇
  • 【火炉炼AI】之深度学习
    7篇
  • 机器学习
    55篇
  • 深度学习
    10篇
  • Python笔记
    4篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习神经网络tensorflow
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Python笔记004-元组的拆包和命名元组

Python笔记004-元组的拆包和命名元组以下是我学习《流畅的Python》后的个人笔记,现在拿出来和大家共享,希望能帮到各位Python学习者。首次发表于: 微信公众号:科技老丁哥,ID: TechDing,敬请关注。本篇主要知识点:元组的拆包就是将元组内部的每个元素按照位置一一对应的赋值给不同变量,可以应用到变量赋值,函数参数赋值,获取元组中特定位置的元素值等场合。na...
原创
发布博客 2019.06.07 ·
455 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

Python笔记003-生成器和生成器表达式

Python笔记003-生成器和生成器表达式以下是我学习《流畅的Python》后的个人笔记,现在拿出来和大家共享,希望能帮到各位Python学习者。首次发表于: 微信公众号:科技老丁哥,ID: TechDing,敬请关注。本篇主要知识点:生成器使用yield做关键字,一次只返回一个值给调用者,然后暂停执行,其作用是:节省内存空间。生成器可以用next()函数,也可以用for迭...
原创
发布博客 2019.06.07 ·
234 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

Python笔记002-列表推导式

Python笔记002-列表推导式以下是我学习《流畅的Python》后的个人笔记,现在拿出来和大家共享,希望能帮到各位Python学习者。首次发表于: 微信公众号:科技老丁哥,ID: TechDing,敬请关注。本篇主要知识点:列表推导式可以从一个序列快速构建另一个序列,非常方便快捷,强烈建议使用。列表推导式适用于简单的for循环,可以对一个列表中的每个元素进行相同操作,也可...
原创
发布博客 2019.06.05 ·
325 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

Python笔记001-类的特殊方法

Python笔记001-类的特殊方法以下是我学习《流畅的Python》后的个人笔记,现在拿出来和大家共享,希望能帮到各位Python学习者。首次发表于: 微信公众号:科技老丁哥,ID: TechDing,敬请关注。本篇主要知识点:类的特殊方法(一般都在前后带有两个下划线,比如__len__和__getitem__),其存在的目的是被Python解释器调用,而不是类的对象来调用。...
原创
发布博客 2019.06.04 ·
249 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

【火炉炼AI】深度学习010-Keras微调提升性能(多分类问题)

【火炉炼AI】深度学习010-Keras微调提升性能(多分类问题)(本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2, Keras 2.1.6, Tensorflow 1.9.0)前面的文章(【火炉炼AI】深度学习007-Keras微调进一步提升性能)我们对二分类问题用Keras进行了Fin...
原创
发布博客 2018.11.15 ·
591 阅读 ·
3 点赞 ·
5 评论 ·
4 收藏

【火炉炼AI】深度学习009-用Keras迁移学习提升性能(多分类问题)

【火炉炼AI】深度学习009-用Keras迁移学习提升性能(多分类问题)(本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2, Keras 2.1.6, Tensorflow 1.9.0)本文是仿照前面的文章【火炉炼AI】深度学习006-移花接木-用Keras迁移学习提升性能,原文是针对二分类...
原创
发布博客 2018.11.15 ·
807 阅读 ·
1 点赞 ·
2 评论 ·
7 收藏

【火炉炼AI】深度学习008-Keras解决多分类问题

【火炉炼AI】深度学习008-Keras解决多分类问题(本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2, Keras 2.1.6, Tensorflow 1.9.0)在我前面的文章【火炉炼AI】深度学习005-简单几行Keras代码解决二分类问题中,介绍了用Keras解决二分类问题。那么多...
原创
发布博客 2018.11.15 ·
848 阅读 ·
3 点赞 ·
1 评论 ·
3 收藏

【火炉炼AI】深度学习007-Keras微调进一步提升性能

【火炉炼AI】深度学习007-Keras微调进一步提升性能(本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2, Keras 2.1.6, Tensorflow 1.9.0)本文使用微调(Fine-tune)技术来提升模型的性能,是前面的两篇文章(编号为005和006)的延续。前面我们通过迁移...
原创
发布博客 2018.11.14 ·
534 阅读 ·
1 点赞 ·
2 评论 ·
3 收藏

【火炉炼AI】深度学习006-移花接木-用Keras迁移学习提升性能

【火炉炼AI】深度学习006-移花接木-用Keras迁移学习提升性能(本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2, Keras 2.1.6, Tensorflow 1.9.0)上一篇文章我们用自己定义的模型来解决了二分类问题,在20个回合的训练之后得到了大约74%的准确率,一方面是我们...
原创
发布博客 2018.11.13 ·
604 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

【火炉炼AI】深度学习005-简单几行Keras代码解决二分类问题

【火炉炼AI】深度学习005-简单几行Keras代码解决二分类问题(本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2, Keras 2.1.6, Tensorflow 1.9.0)很多文章和教材都是用MNIST数据集作为深度学习届的“Hello World”程序,但是这个数据集有一个很大的特...
原创
发布博客 2018.11.13 ·
992 阅读 ·
3 点赞 ·
6 评论 ·
4 收藏

【火炉炼AI】深度学习004-Elman循环神经网络

【火炉炼AI】深度学习004-Elman循环神经网络(本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 )Elman神经网络是最早的循环神经网络,由Elman于1990年提出,又称为SRN(Simple Recurrent Network, 简单循环网络)。SRN考虑了时序信息,当前时刻的输...
原创
发布博客 2018.11.03 ·
6150 阅读 ·
2 点赞 ·
0 评论 ·
23 收藏

【火炉炼AI】深度学习003-构建并训练深度神经网络模型

【火炉炼AI】深度学习003-构建并训练深度神经网络模型(本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 )前面我们讲解过单层神经网络模型,发现它结构简单,难以解决一些实际的比较复杂的问题,故而现在发展出了深度神经网络模型。深度神经网络的深度主要表现在隐含层的层数上,前面的单层神经网络只...
原创
发布博客 2018.11.02 ·
481 阅读 ·
1 点赞 ·
2 评论 ·
1 收藏

【火炉炼AI】深度学习002-构建并训练单层神经网络模型

【火炉炼AI】深度学习002-构建并训练单层神经网络模型(本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 )前面我们介绍了神经网络的基本结构单元-感知器,现在我们再升一级,看看神经网络的基本结构和训练方法。1. 单层神经网络单层神经网络由一个层次中的多个神经元组成,总体来看,单层神经...
原创
发布博客 2018.11.02 ·
528 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【火炉炼AI】深度学习001-神经网络的基本单元-感知器

【火炉炼AI】深度学习001-神经网络的基本单元-感知器(本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 )在人工智能领域,深度学习已经脱颖而出,越来越成为大型复杂问题的首选解决方案。深度学习相对传统机器学习的区别主要在于,使用模拟人类大脑的神经网络来构建模型。早期的浅层次神经网络也可以认...
原创
发布博客 2018.11.01 ·
477 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

【火炉炼AI】机器学习055-使用LBP直方图建立人脸识别器

【火炉炼AI】机器学习055-使用LBP直方图建立人脸识别器(本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 )在我前面的博文【火炉炼AI】机器学习052-OpenCV构建人脸鼻子眼睛检测器中,讲到了人脸检测的方法和代码实现,但在很多实际场合,我们需要做的是人脸识别,即判断图片中的那张脸是...
原创
发布博客 2018.11.01 ·
669 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

【火炉炼AI】机器学习054-用ICA做盲源分离

【火炉炼AI】机器学习054-用ICA做盲源分离(本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 )盲源分离是指在信号的理论模型和源信号无法精确获知的情况下,如何从混叠信号中分离出各源信号的过程。盲源分离的目的是求得源信号的最佳估计。说的通俗一点,就相当于,假如有十个人同时说话,我用录音机...
原创
发布博客 2018.10.31 ·
3281 阅读 ·
1 点赞 ·
1 评论 ·
21 收藏

【火炉炼AI】机器学习053-数据降维绝招-PCA和核PCA

【火炉炼AI】机器学习053-数据降维绝招-PCA和核PCA(本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 )主成分分析(Principal Component Analysis, PCA)可以说是数据降维的绝招,不仅在人口统计学,数量地理学,分子动力学模拟,数学建模等领域有着重要的应用...
原创
发布博客 2018.10.31 ·
607 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

【火炉炼AI】机器学习052-OpenCV构建人脸鼻子眼睛检测器

【火炉炼AI】机器学习052-OpenCV构建人脸鼻子眼睛检测器(本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2,opencv-python 3.4.2)有两个重要的概念需要澄清一下:人脸检测:是指检测图像或视频中是否存在人脸,以及定位人脸的具体位置,人脸识别:确定图像或视频中的人脸是张三...
原创
发布博客 2018.10.24 ·
502 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

【火炉炼AI】机器学习051-视觉词袋模型+极端随机森林建立图像分类器

【火炉炼AI】机器学习051-视觉词袋模型+极端随机森林建立图像分类器(本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 )视觉词袋模型(Bag Of Visual Words,BOVW)来源于自然语言处理中的词袋模型(Bag Of Words, BOW),关于词袋模型,可以参考我的博文【火...
原创
发布博客 2018.10.23 ·
628 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

【火炉炼AI】机器学习050-提取图像的Star特征

【火炉炼AI】机器学习050-提取图像的Star特征(本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 )对于图像的特征点,前面我们讨论过边缘检测方法,Harris角点检测算法等,这些检测算法检测的都是图像的轮廓边缘,而不是内部细节,如果要进一步提取图像内部细节方面的特征,需要用到SIFT特...
原创
发布博客 2018.10.22 ·
996 阅读 ·
2 点赞 ·
1 评论 ·
6 收藏
加载更多