省选专练(大杂烩)SDOI2010 古代猪文

本质是求:

G^{\sum_{d|n}C_{n}^{d}}\equiv (Mod p)

P是一个质数对吧

费马小定理一下

发现P-1不是质数(废话)

所以还是要求一个大组合数

所以我们需要exLucas定理

用CRT merge一下

最后快速幂

所以是个练手的好题

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
typedef int INT;
#define int long long
const int Mod=999911659;
int mod[4]={2,3,4679,35617};
int fac[35620]={};
inline void Pre(int mod){
    fac[0]=1;
    for(int i=1;i<=mod;i++){
        fac[i]=fac[i-1]*i%mod;
    }
}
inline int quick_pow(int x,int k,int mod){
    int ret=1;
    while(k){
        if(k%2==1)ret=(x*ret)%mod;
        k/=2;
        x=x*x%mod;
    }
    return ret;
}
inline int C(int n,int m,int mod){
    if(m>n)return 0;
    return fac[n]*quick_pow(fac[n-m],mod-2,mod)%mod*quick_pow(fac[m],mod-2,mod)%mod;
}
inline int Lucas_Theorem(int n,int m,int mod){
    if(!m)return 1;
    return C(n%mod,m%mod,mod)*Lucas_Theorem(n/mod,m/mod,mod);
}
inline int Unique_Decomposition_Theorem(int sum,int mod){
    int ret=0;
    for(int i=1;i*i<=sum;i++){
        if(sum%i==0){
            ret=(ret+Lucas_Theorem(sum,i,mod))%mod;
            if((sum/i)!=i){
                ret=(ret+Lucas_Theorem(sum,(sum/i),mod))%mod;
            }
        }
    }
//	cout<<sum<<" "<<ret<<" "<<mod<<'\n';
    return ret;
}
inline int Chinese_Remainder_Theorem(int sum){
    int ret=0;
    for(int i=0;i<=3;i++){
        Pre(mod[i]);
        int inv=quick_pow((Mod-1)/mod[i],mod[i]-2,mod[i]);
        int now=Unique_Decomposition_Theorem(sum,mod[i]);
        ret=(ret+inv*((Mod-1)/mod[i])%(Mod-1)*now)%(Mod-1);
    }
    return ret;
}
int n,g;
int  Solve(){
    cin>>n;
    cin>>g;
    if(g==Mod)return 0; 
    int pow=Chinese_Remainder_Theorem(n);
    return quick_pow(g,pow,Mod);
}
INT main(){	
//	freopen("test.in","r",stdin);
    cout<<Solve();
    return 0;
}

 

转载于:https://www.cnblogs.com/Leo-JAM/p/10079143.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值