Description
众所周知zhu是一个大厨,zhu一直有自己独特的咸鱼制作技巧.
tang是一个咸鱼供应商,他告诉zhu在他那里面有N条咸鱼(标号从1到N)可以被用来制作.
每条咸鱼都有一个咸鱼值Ki,初始时所有Ki都是0.
zhu是一个特别的人,他有M个咸数(咸鱼数字), 对于每个咸数x,他都会让所有满足标号是x倍数的咸鱼的咸鱼值异或上1.
zhu现在想知道经过了这M个咸数的筛选之后,最终有多少条的咸鱼的咸鱼值是1?
Input
输入的第一行包含一个整数T(1≤T≤1000),表示有T组数据.
对于每组数据:
输入第一行只有两个整数N(1≤N≤10^9),M(1≤M≤15).
接下来一行有M个整数,依次对应zhu的每个咸数(1≤咸数≤2∗10^5).
Output
对于每组数据,输出答案.
Sample Input
2
10 1
3
10 1
1
Sample Output
3
10
入门级容斥?
但是不是的,她虽然简单毕竟你看到了ZHU
ZHU爷会水题?
最开始奇加偶减过了样例自信交
然后WA了
仔细思考我实际求得是倍数的个数
网上高人的都是找规律我给出一个证明好了
∑i=1k(ki)(−1)i+12i−1\sum_{i=1}^{k}{k \choose i}(-1)^{i+1}2^{i-1}∑i=1k(ik)(−1)i+12i−1= ∑i=1k(ki)(−2)i−1\sum_{i=1}^{k}{k \choose i}(-2)^{i-1}∑i=1k(ik)(−2)i−1
=1−2∑i=1k(ki)(−2)i=\frac{1}{-2}\sum_{i=1}^{k}{k \choose i}(-2)^{i}=−21∑i=1k(ik)(−2)i
=−(k0)(−2)0+∑i=0k(ki)(−2)i−2=\frac{-{k \choose 0}(-2)^0+\sum_{i=0}^{k}{k \choose i}(-2)^{i}}{-2}=−2−(0k)(−2)0+∑i=0k(ik)(−2)i(这一步到下一步我用了数学归纳法证明)
=−1+(−2+1)k−2=\frac{-1+(-2+1)^{k}}{-2}=−2−1+(−2+1)k
=1−(−1)k2=\frac{1-(-1)^{k}}{2}=21−(−1)k
=[2∤k]=[2 \nmid k]=[2∤k]
实际上容斥系数也可以DP
实际上就是这样On2On^{2}On2处理是万能的
#include<bits/stdc++.h>
using namespace std;
typedef int INT;
#define int long long
int F[21];
int A[21];
int C[21][21];
int n,m;
int ans=0;
void DFS(int x,int sum,int cnt){
if(sum>n)return;
if(x==m+1){
ans=ans+F[cnt]*(n/sum);
return;
}
int tmp=sum/(__gcd(A[x],sum))*A[x];
DFS(x+1,tmp,cnt+1);
DFS(x+1,sum,cnt);
}
INT main(){
C[0][0]=1;
for(int i=1;i<=20;++i){
C[i][0]=1;
for(int j=1;j<=i;++j){
C[i][j]=C[i-1][j]+C[i-1][j-1];
}
}
F[1]=1;
for(int i=2;i<=20;++i){
F[i]=i&1;
for(int j=1;j<i;++j){
F[i]-=F[j]*C[i][j];
}
}
int Cas;
cin>>Cas;
while(Cas--){
cin>>n>>m;
for(int i=1;i<=m;++i)cin>>A[i];
DFS(1,1,0);
cout<<ans<<'\n';
ans=0;
}
}