看官方题解即可
说明一下其对引理的证明
首先是不会删除比当前MEX大的数,假设前面已经是最优的删除方法了,对于当前删掉的数 x x x,如果 x > x> x>MEX,那么对于接下来的操作序列,我们直接将 x x x放在这个操作序列的最后一个,答案显然不变
然后是要删数就一定删完,假设前面已经是最优的删除方法了,对于当前删掉的数 x x x,如果删除 x x x的中间插入了一些数(如下图),那么由前面的证明可以知道,在当前到最后一个 x x x被删除之前,这些时间的MEX都是没有变化的,于是我们可以将所有删除 x x x的操作延后直到挨到了一起
然后给出一个错误的贪心思路:每次删除比当前MEX小,而且出现次数最少的数(如果出现次数相同就优先删除数值更小的数)
反例:0 0 1 1 2 2 ... x-1 x-1 x
,其中
x
x
x非常大,显然最优策略是连续删除两个
0
0
0
看到了 n n n的规模是 5000 5000 5000,一般都是平方DP嘛,贪心实在不能证明就想一下DP是不是能做啊