学习笔记(一):《神经网络与深度学习》(邱锡鹏)(2019.4.14)

这篇博客记录了作者阅读邱锡鹏《神经网络与深度学习》的感悟,强调了图灵测试在AI领域的意义,概述了人工智能的感知、学习和认知三个主要领域。同时,介绍了几种常用的深度学习框架,如Theano、Caffe2、TensorFlow、Chainer和PyTorch,讨论了它们的特点和应用场景。
摘要由CSDN通过智能技术生成

改模型调参数的同时,用java和python实现今日的算法,用习惯了C++写算法,真是不习惯用java.

抽时间阅读了邱老师的新书《神经网络与深度学习》,最近会做一些整理。

《神经网络与深度学习》第一章绪论

最初人工智能的idea来自图灵测试,重读图灵测试的核心思想,不得不说,精简的话语撑起了AI的半边天,尤其是自己对GAN深入研究的半年,生成对抗的思想真的是图灵测试最好的诠释。要想使计算机通过图灵测试,计算机必须具备理解语言,学习,记忆,推理,决策等能力,进而引申出了NLP,CV, RL, KG等相关方向。

人工智能的主要领域大体上可以分为以下几个方面:

感知:语音信息处理,计算机视觉

学习:监督学习,无监督学习,强化学习

认知:知识表示,NLP,推理决策等

机器学习:从有限的数据中学习出能够代表一半一般性规律或特征的模型,从而可以预测未来的数据。

常用深度学习框架:

Theano1:蒙特利尔大学的Python 工具包,用来高效地定义、优化和执行
Theano 项目目前已停止维
多维数组数据对应数学表达式。Theano可以透明的使用GPUs和高效的符号 护。
微分。
Caffe2:全称为Convolutional Architectu

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值