opencv 3 core组件进阶(3 离散傅里叶变换;输入输出XML和YAML文件)

离散傅里叶变换

#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
using namespace cv;


//-----------------------------------【ShowHelpText( )函数】----------------------------------
//       描述:输出一些帮助信息
//----------------------------------------------------------------------------------------------
void ShowHelpText()
{
    //输出欢迎信息和OpenCV版本
    
    printf("\n\n\t\t\t   当前使用的OpenCV版本为:" CV_VERSION);
    printf("\n\n  ----------------------------------------------------------------------------\n");
}



//--------------------------------------【main( )函数】-----------------------------------------
//          描述:控制台应用程序的入口函数,我们的程序从这里开始执行
//-------------------------------------------------------------------------------------------------
int main()
{

    //【1】以灰度模式读取原始图像并显示
    Mat srcImage = imread("1.jpg", 0);
    if (!srcImage.data) { printf("读取图片错误,请确定目录下是否有imread函数指定图片存在~! \n"); return false; }
    imshow("原始图像", srcImage);

    ShowHelpText();

    //【2】将输入图像延扩到最佳的尺寸,边界用0补充
    int m = getOptimalDFTSize(srcImage.rows);
    int n = getOptimalDFTSize(srcImage.cols);
    //将添加的像素初始化为0.
    Mat padded;
    copyMakeBorder(srcImage, padded, 0, m - srcImage.rows, 0, n - srcImage.cols, BORDER_CONSTANT, Scalar::all(0));

    //【3】为傅立叶变换的结果(实部和虚部)分配存储空间。
    //将planes数组组合合并成一个多通道的数组complexI
    Mat planes[] = { Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F) };
    Mat complexI;
    merge(planes, 2, complexI);

    //【4】进行就地离散傅里叶变换
    dft(complexI, complexI);

    //【5】将复数转换为幅值,即=> log(1 + sqrt(Re(DFT(I))^2 + Im(DFT(I))^2))
    split(complexI, planes); // 将多通道数组complexI分离成几个单通道数组,planes[0] = Re(DFT(I), planes[1] = Im(DFT(I))
    magnitude(planes[0], planes[1], planes[0]);// planes[0] = magnitude  
    Mat magnitudeImage = planes[0];

    //【6】进行对数尺度(logarithmic scale)缩放
    magnitudeImage += Scalar::all(1);
    log(magnitudeImage, magnitudeImage);//求自然对数

    //【7】剪切和重分布幅度图象限
    //若有奇数行或奇数列,进行频谱裁剪      
    magnitudeImage = magnitudeImage(Rect(0, 0, magnitudeImage.cols & -2, magnitudeImage.rows & -2));
    //重新排列傅立叶图像中的象限,使得原点位于图像中心  
    int cx = magnitudeImage.cols / 2;
    int cy = magnitudeImage.rows / 2;
    Mat q0(magnitudeImage, Rect(0, 0, cx, cy));   // ROI区域的左上
    Mat q1(magnitudeImage, Rect(cx, 0, cx, cy));  // ROI区域的右上
    Mat q2(magnitudeImage, Rect(0, cy, cx, cy));  // ROI区域的左下
    Mat q3(magnitudeImage, Rect(cx, cy, cx, cy)); // ROI区域的右下
    //交换象限(左上与右下进行交换)
    Mat tmp;
    q0.copyTo(tmp);
    q3.copyTo(q0);
    tmp.copyTo(q3);
    //交换象限(右上与左下进行交换)
    q1.copyTo(tmp);
    q2.copyTo(q1);
    tmp.copyTo(q2);

    //【8】归一化,用0到1之间的浮点值将矩阵变换为可视的图像格式
    //此句代码的OpenCV2版为:
    //normalize(magnitudeImage, magnitudeImage, 0, 1, CV_MINMAX); 
    //此句代码的OpenCV3版为:
    normalize(magnitudeImage, magnitudeImage, 0, 1, NORM_MINMAX);

    //【9】显示效果图
    imshow("频谱幅值", magnitudeImage);
    waitKey();

    return 0;
}
详解:md,粘了也看不懂,不粘了

输入输出XML和YAML文件

1589120-20190712081517963-1819704169.png
1589120-20190712082354664-252969333.png
1589120-20190712082423925-335332273.png

【第二步】进行文件读写操作

(1)文本和数字的输入和输出
1589120-20190712082651048-742975129.png
1589120-20190712084841311-1440025664.png
1589120-20190712084858037-773040277.png
1589120-20190712084918539-750642612.png

写入

#define _CRT_SECURE_NO_WARNINGS
#include "opencv2/opencv.hpp"  
#include <time.h>  
using namespace cv;


//-----------------------------------【ShowHelpText( )函数】----------------------------------
//       描述:输出一些帮助信息
//----------------------------------------------------------------------------------------------
void ShowHelpText()
{
    //输出欢迎信息和OpenCV版本
    
    printf("\n\n\t\t\t   当前使用的OpenCV版本为:" CV_VERSION);
    printf("\n\n  ----------------------------------------------------------------------------\n");
}


//-----------------------------------【main( )函数】--------------------------------------------
//  描述:控制台应用程序的入口函数,我们的程序从这里开始
//-----------------------------------------------------------------------------------------------
int main()
{
    //改变console字体颜色
    system("color 5F");

    ShowHelpText();

    //初始化
    FileStorage fs("test.yaml", FileStorage::WRITE);

    //开始文件写入
    fs << "frameCount" << 5;
    time_t rawtime; time(&rawtime);
    fs << "calibrationDate" << asctime(localtime(&rawtime));
    Mat cameraMatrix = (Mat_<double>(3, 3) << 1000, 0, 320, 0, 1000, 240, 0, 0, 1);
    Mat distCoeffs = (Mat_<double>(5, 1) << 0.1, 0.01, -0.001, 0, 0);
    fs << "cameraMatrix" << cameraMatrix << "distCoeffs" << distCoeffs;
    fs << "features" << "[";
    for (int i = 0; i < 3; i++)
    {
        int x = rand() % 640;
        int y = rand() % 480;
        fs << "{:" << "x" << x << "y" << y << "lbp" << "[:";
        uchar lbp = rand() % 256;

        for (int j = 0; j < 8; j++)
            fs << ((lbp >> j) & 1);
        fs << "]" << "}";
    }
    fs << "]";
    fs.release();

    printf("\n文件读写完毕,请在工程目录下查看生成的文件~");
    getchar();

    return 0;
}

读取

#include "opencv2/opencv.hpp"  
#include <time.h>  
using namespace cv;  
using namespace std;  


//-----------------------------------【ShowHelpText( )函数】----------------------------------
//       描述:输出一些帮助信息
//----------------------------------------------------------------------------------------------
void ShowHelpText()
{
    //输出欢迎信息和OpenCV版本
    
    printf("\n\n\t\t\t   当前使用的OpenCV版本为:" CV_VERSION );
    printf("\n\n  ----------------------------------------------------------------------------\n\n");
}




int main( )  
{  
    //改变console字体颜色
    system("color 6F"); 

    ShowHelpText();

    //初始化
    FileStorage fs2("test.yaml", FileStorage::READ);  

    // 第一种方法,对FileNode操作
    int frameCount = (int)fs2["frameCount"];  

    std::string date;  
    // 第二种方法,使用FileNode运算符> > 
    fs2["calibrationDate"] >> date;  

    Mat cameraMatrix2, distCoeffs2;  
    fs2["cameraMatrix"] >> cameraMatrix2;  
    fs2["distCoeffs"] >> distCoeffs2;  

    cout << "frameCount: " << frameCount << endl  
        << "calibration date: " << date << endl  
        << "camera matrix: " << cameraMatrix2 << endl  
        << "distortion coeffs: " << distCoeffs2 << endl;  

    FileNode features = fs2["features"];  
    FileNodeIterator it = features.begin(), it_end = features.end();  
    int idx = 0;  
    std::vector<uchar> lbpval;  

    //使用FileNodeIterator遍历序列
    for( ; it != it_end; ++it, idx++ )  
    {  
        cout << "feature #" << idx << ": ";  
        cout << "x=" << (int)(*it)["x"] << ", y=" << (int)(*it)["y"] << ", lbp: (";  
        // 我们也可以使用使用filenode > > std::vector操作符很容易的读数值阵列
        (*it)["lbp"] >> lbpval;  
        for( int i = 0; i < (int)lbpval.size(); i++ )  
            cout << " " << (int)lbpval[i];  
        cout << ")" << endl;  
    }  
    fs2.release();  

    //程序结束,输出一些帮助文字
    printf("\n文件读取完毕,请输入任意键结束程序~");
    getchar();

    return 0;  
}  

转载于:https://www.cnblogs.com/xingkongcanghai/p/11172785.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值