XGBoost的推导和说明

一、简介

XGBoost是“Extreme Gradient Boosting”的缩写,其中“Gradient Boosting”一词在论文Greedy Function Approximation: A Gradient Boosting Machine中,由Friedman提出。XGBoost 也是基于这个原始模型改进的。

XGBoost提出后,不仅成为各大数据科学比赛的必杀武器,在实际工作中,XGBoost也在被各大公司广泛地使用。

 

二、树集成

XGBoost属于Boosting集成学习算法的一种,它以CART为基学习器,CART是一棵二叉树,每个叶子都有一个分数,如下图所示

 通常,一棵树过于简单,所以集成学习将多棵树进行结合,常常获得比单棵树优越的泛化性能。

XGBoost是加法模型,它会把多棵树的预测加到一起,预测得分是每棵树的预测分数之和,如下图所示

 

可以用下面的数学公式描述我们的模型

其中,$K$是树的数量,$f_{k}$是一棵树,$F$是所有可能的CART树集合。

 

三、树提升

3.1加性训练

XGBoost的目标函数为

机器学习中的目标函数总是由两个部分组成:训练损失部分 和 正则化部分。

正如上式一样,前面是损失部分,后面是正则化部分,在XGBoost中将全部K棵树的复杂度进行求和,添加到目标函数中作为正则化项

损失函数用来描述模型与训练数据的契合程度,正则化项用来描述模型的某些性质,比如模型的复杂度。

常见的损失函数有平方损失和log损失,表达式分别如下

我们要学习的是那些函数f,每个函数都包含了树的结构和叶节点的分数。一次性地学习出所有的树是很棘手的,在XGBoost中采用“加性策略”(additive strategy)学习模型:保持学习到的结果不变,每次添加一棵新的树。 如果$y^{(t)}_{i}$表示第t步的预测值,则有:

那么我们每次都要留下哪棵树?一个很自然的想法就是选择可以优化我们目标函数的树。前面 t-1 棵树的模型复杂度是一个常数,我的目标函数可以写为

 如果采用平方损失作为损失函数,可以变为下面的形式

使用平方损失函数有许多友好的地方,它具有一阶项(通常称为残差)和二次项。对于其他形式的损失函数,并不容易获得这么好的形式。一般情况下,我们可以用泰勒公式展开损失函数

泰勒公式的二阶展开式如下

展开后的目标函数变为

其中,$g$是一阶偏导,$h$是二阶偏导

上面的目标函数中 $l(y,\hat{y})$是前t-1棵树带来的损失,是一个常数,下面把常数项去掉,第t步的目标函数就变成了

这个定义的损失函数只取决于$g$$h$,这就是XGBoost支持自定义损失函数的方式,我们可以优化包括log损失在内的每一个损失函数,对损失函数求一阶和二阶偏导,得到g和h,然后带到上面的公式中就可以了。

 

3.2模型复杂度

我们介绍了模型的训练,但还没定义模型复杂度$\Omega (f)$,我们先改进一棵树的定义为:

其中$w$是叶节点上的分数向量,$q$是将输入数据映射到某个叶节点的函数,$T$是叶节点的数量。我们定义XGBoost的复杂度为

它由两部分组成:(1)叶结点的数量 和 (2)叶结点分数向量的L2范数;

 

3.3结构分数

将上面得到式子带到前面得到的目标函数中,有

其中

 它存放着被映射到第$j$个叶子节点的数据 $x_{i}$的索引集合。

上面目标函数的第二行中,式子修改了求和符号的下标,由$i$=1变为 $i\in I_{j}$,这是因为同一叶节点上的数据有相同的分数。

我们可以进一步压缩这个目标函数:

其中

这个目标函数中,$w_{j}$彼此独立,而

二次式,我们可以用顶点公式找出最优解

对于给定结构$q(x)$,使目标函数最小化的$w^{*}_{j}$的取值和最小化的目标函数为

最后一个公式用于衡量树形结构的好坏,分数越小,模型的结构越好。

如果这听起来有点复杂,那么让我们看看下面图片,分数是如何计算的。

总的来说,对于给定的树结构,我们把 $g$ 和 $h$ 放到它们对应的叶节点中,对这些数据进行求和,然后使用公式计算树有多好。

这个分数类似于决策树中的不纯度,只是它还考虑了模型的复杂性。

 

3.4学习树结构

现在我们有了一种方法来衡量一棵树的质量,理想情况下,我们将枚举所有可能的树并选择最佳的树。

实际上这是棘手的,所以我们将尝试每次优化树的一层。具体来说,我们尝试将一个叶节点分成叶节点,其分数增益为

公式从左到右可分解为4个部分

  • 1)新左叶上的分数
  • 2)新右叶上的分数
  • 3)原始叶上的分数
  • 4)附加叶上的正则化。

如果增益小于$\gamma$,说明添加一个节点没有带来模型性能的提升,容易导致过拟合,我们最好不要添加该分支。这正是基于树的模型中的剪枝技术。

 

对于实值数据,我们通常希望找到最佳分割点。为了有效地做到这一点,我们将所有样本排好序,如下图所示。

然后从左到右的扫描,就足以计算所有可能的分割方案的结构得分,我们可以有效地找到最佳的拆分。

 

 

参考文章

https://xgboost.readthedocs.io/en/latest/tutorials/model.html

https://blog.csdn.net/weixin_30443813/article/details/96532052

转载于:https://www.cnblogs.com/dogecheng/p/11588303.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
毕设新项目-基于Java开发的智慧养老院信息管理系统源码+数据库(含vue前端源码).zip 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我! 毕设新项目-基于Java开发的智慧养老院信息管理系统源码+数据库(含vue前端源码).zip毕设新项目-基于Java开发的智慧养老院信息管理系统源码+数据库(含vue前端源码).zip毕设新项目-基于Java开发的智慧养老院信息管理系统源码+数据库(含vue前端源码).zip毕设新项目-基于Java开发的智慧养老院信息管理系统源码+数据库(含vue前端源码).zip毕设新项目-基于Java开发的智慧养老院信息管理系统源码+数据库(含vue前端源码).zip毕设新项目-基于Java开发的智慧养老院信息管理系统源码+数据库(含vue前端源码).zip毕设新项目-基于Java开发的智慧养老院信息管理系统源码+数据库(含vue前端源码).zip毕设新项目-基于Java开发的智慧养老院信息管理系统源码+数据库(含vue前端源码).zip毕设新项目-基于Java开发的智慧养老院信息管理系统源码+数据库(含vue前端源码).zip
XGBoost,全名为eXtreme Gradient Boosting,是一种基于决策树的集成学习算法。它结合了Gradient Boosting算法和决策树算法的优点,在许多机器学习竞赛中取得了显著的成绩。 下面是XGBoost的数学推导XGBoost的目标函数为: $$ Obj = \sum_{i=1}^{n}l(y_i, \hat{y_i}) + \sum_{k=1}^{K}\Omega(f_k) $$ 其中,$n$为样本数,$y_i$为第$i$个样本的真实值,$\hat{y_i}$为第$i$个样本的预测值,$l(y_i, \hat{y_i})$为损失函数,$K$为树的数量,$\Omega(f_k)$为正则化项。正则化项的目的是防止过拟合,它包括树的叶子节点数量和叶子节点分数的二阶范数。 XGBoost使用Gradient Boosting算法进行训练,Gradient Boosting算法的核心思想是迭代地训练一组弱学习器,将它们组合成一个强学习器。每一次迭代都会添加一个新的树模型,它的预测值是前面树模型的预测值和当前树模型的预测值的加权和。 因此,我们需要定义一个损失函数$L$,它是所有树模型预测值和真实值之间的差距的加权和,即: $$ L = \sum_{i=1}^{n}l(y_i, \hat{y_i}) + \sum_{k=1}^{K}\Omega(f_k) $$ 其中,$\hat{y_i}$为所有树模型预测值的加权和。 为了最小化损失函数$L$,我们需要对每个树模型的预测值进行求解。我们可以使用梯度下降算法来优化损失函数,其中梯度是损失函数关于当前模型的导数。 对于第$k$个树模型,我们需要求解其预测值$f_k(x_i)$,它可以表示为: $$ f_k(x_i)=f_{k-1}(x_i)+h_k(x_i) $$ 其中,$f_{k-1}(x_i)$为前$k-1$个树模型的预测值,$h_k(x_i)$为第$k$个树模型的预测值。 我们可以使用泰勒展开式来近似$h_k(x_i)$: $$ h_k(x_i) = \sum_{j=1}^{J}w_{j,k} I(x_i\in R_{j,k}) $$ 其中,$w_{j,k}$为第$j$个叶子节点的分数,$R_{j,k}$为第$j$个叶子节点的区域。 我们需要对每个叶子节点的分数进行求解,可以使用最小二乘法来求解。对于第$j$个叶子节点,我们需要求解其分数$w_{j,k}$,它可以表示为: $$ w_{j,k}=-\frac{\sum_{x_i\in R_{j,k}}g_i}{\sum_{x_i\in R_{j,k}}h_i+\lambda} $$ 其中,$g_i$为损失函数关于预测值的一阶导数,$h_i$为损失函数关于预测值的二阶导数,$\lambda$为正则化参数。 最后,我们可以使用梯度下降算法来更新每个树模型的预测值。对于第$k$个树模型,我们需要将其预测值$f_k$更新为: $$ f_k(x_i)=f_{k-1}(x_i)+\eta\sum_{j=1}^{J}w_{j,k} I(x_i\in R_{j,k}) $$ 其中,$\eta$为学习率,它控制每个树模型的贡献大小。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值