htbeker
码龄7年
关注
提问 私信
  • 博客:920,835
    社区:1
    920,836
    总访问量
  • 56
    原创
  • 1,140,652
    排名
  • 203
    粉丝
  • 0
    铁粉

个人简介:毕业论文、课程设计、数据分析、数据挖掘、机器学习培训。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
  • 加入CSDN时间: 2017-12-30
博客简介:

htbeker的博客

博客描述:
数据挖掘与机器学习爱好者
查看详细资料
个人成就
  • 获得365次点赞
  • 内容获得78次评论
  • 获得1,416次收藏
  • 代码片获得168次分享
创作历程
  • 7篇
    2021年
  • 1篇
    2020年
  • 19篇
    2019年
  • 33篇
    2018年
成就勋章
TA的专栏
  • 多任务学习
    2篇
  • 数据结构与算法
    1篇
  • 数据分析
    17篇
  • 机器学习
    19篇
  • 数据库
    2篇
  • 风控模型
    2篇
  • pandas
    5篇
  • matplotlib
    1篇
  • 其它
    3篇
  • pyspark
    7篇
  • 深度学习
    10篇
兴趣领域 设置
  • 数据结构与算法
    排序算法推荐算法
  • 大数据
    hivesparketl
  • 人工智能
    tensorflownlpscikit-learn分类
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

使用GRPC调用TensorFlow-Serving服务

docker启动服务:docker run -p 8502:8500 --mount type=bind,source=/home/recommend/hh/esmm,target=/models/search_multiply_task_model -e MODEL_NAME=search_multiply_task_model -t tensorflow/serving:2.2.0 其中,本机的8502端口对应Docker的8500端口(GRPC端口),本机8501端口对应Docker的85
原创
发布博客 2021.08.03 ·
973 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

你们都是怎么学 Python 的?

无意中听我们院长大人说:Python是一门神奇的语言,在此之前我已经对C/C++/Java等几门语言有了一定得了解和掌握,并做过一些小项目。学习Python大致可以分为以下几个阶段:1.刚上手的时候肯定是先过一遍Python最基本的知识,比如说:变量、数据结构、语法等,基础过的很快,基本上1~2周时间就能过完了,我当时是在这儿看的基础:Python 简介 | 菜鸟教程如果你想简单点,我把我自己的学习经验总结成了一本Python以及爬虫电子书,保证非常的通俗易懂帮助你学会Python,目前这本
原创
发布博客 2021.03.15 ·
332 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

多任务学习(Multi-task)keras实现

多目标任务存在很多场景中,如多目标检测,推荐系统中的多任务学习。多任务学习(Multi-task learning)简介多任务学习(Multi-task learning)是迁移学习(Transfer Learning)的一种,而迁移学习指的是将从源领域的知识(source domin)学到的知识用于目标领域(target domin),提升目标领域的学习效果。 而多任务学习也是希望模型同时做多个任务时,能将其他任务学到的知识,用于目标任务中,从而提升目标任务效果。如果我们换个角度理解,其实多任
原创
发布博客 2021.03.15 ·
3896 阅读 ·
0 点赞 ·
2 评论 ·
23 收藏

Pandas中DataFrame数据合并、连接(concat、merge、join)

最近在工作中,遇到了数据合并、连接的问题,故整理如下,供需要者参考~一、concat:沿着一条轴,将多个对象堆叠到一起concat方法相当于数据库中的全连接(union all),它不仅可以指定连接的方式(outer join或inner join)还可以指定按照某个轴进行连接。与数据库不同的是,它不会去重,但是可以使用drop_duplicates方法达到去重的效果。concat(objs, axis=0, join='outer', join_axes=None, ignore...
原创
发布博客 2021.03.13 ·
1828 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

pandas的连接函数concat()函数

完整代码扫描下方二维码或微信搜索【有酒有风】回复【pandas】获取。:参数含义objs:Series,DataFrame或Panel对象的序列或映射。如果传递了dict,则排序的键将用作键参数,除非它被传递,在这种情况下,将选择值(见下文)。任何无对象将被静默删除,除非它们都是无,在这种情况下将引发一个ValueError。axis:{0,1,...},默认为0。沿着连接的轴。join:{'inner','outer'},默认为“outer”。如何处理其他轴上的索引。outer为联合和in
原创
发布博客 2021.03.13 ·
198 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

tensorflow之tf.where实例解析

tf.where( condition, x=None, y=None, name=None)a,b为和tensor相同维度的tensor,将tensor中的true位置元素替换为a中对应位置元素,false的替换为b中对应位置元素。import tensorflow as tfimport numpy as npsess=tf.Session() a=np.array([[1,0,0],[0,1,1]])a1=np.array([[3,2,3],[4,5,6]]) pr.
原创
发布博客 2021.01.08 ·
387 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

tf.feature_column详解及避坑攻略

在使用tensorflow搭建模型时会有特征工程的工作,今天介绍一下tensorflow做特征工程的api:tf.feature_column。feature_column 输入输出类型1.深度模型的输入必须是Dense类型,所有输出是categorical类型需要经过indicator或者embedding的转换才可以2.indicator, embedding, bucketized的输入不能是原始特征,前两者只能是categorical类型的feature_column, 后者只能是numer
原创
发布博客 2021.01.06 ·
10066 阅读 ·
14 点赞 ·
0 评论 ·
30 收藏

使用pyspark 进行向量计算

最近根据Airbnb在KDD 2018的bestpaper《Real-time Personalization using Embeddings for Search Ranking at Airbnb》做实时推荐的项目。其中在表达用户短期兴趣特征时我们是将用户近两周对item的行为数乘以对应item向量并将所有行为向量相加。此处item向量已由word2vec训练好。数据格式如下:我...
原创
发布博客 2020.04.10 ·
1841 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

python动态规划及编辑距离计算实例

动态规划的三要素:最优子结构,边界和状态转移函数,最优子结构是指每个阶段的最优状态可以从之前某个阶段的某个或某些状态直接得到(子问题的最优解能够决定这个问题的最优解),边界指的是问题最小子集的解(初始范围),状态转移函数是指从一个阶段向另一个阶段过度的具体形式,描述的是两个相邻子问题之间的关系(递推式)  重叠子问题,对每个子问题只计算一次,然后将其计算的结果保存到一个表格中,每一...
原创
发布博客 2019.10.15 ·
925 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

spark.DataFrane分布式转pandas.dataframe

import pandas as pddef _map_to_pandas(rdds): return [pd.DataFrame(list(rdds))] def topas(df, n_partitions=None): if n_partitions is not None: df = df.repartition(n_partitions) df_pa...
原创
发布博客 2019.07.15 ·
885 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

tf.reduce_sum()

reduce_sum应该理解为按相应的轴压缩求和,用于降维。通过设置axis参数按相应轴压缩求和。通过如下实例进行理解。先设置一个2*3*4的tensor实例x。x =tf.constant([[[ 1, 2, 3, 4],[ 5, 6, 7, 8],[ 9, 10, 11, 12]],[[13, 14, 15, 16],[17, 18, 19, 20],[21, 22, 23...
原创
发布博客 2019.07.02 ·
2893 阅读 ·
6 点赞 ·
0 评论 ·
13 收藏

XGBoost原理及目标函数推导详解

前言 XGBoost(eXtreme Gradient Boosting)全名叫极端梯度提升,XGBoost是集成学习方法的王牌,在Kaggle及工业界都有广泛的应用并取得了较好的成绩,本文较详细的介绍了XGBoost的算法原理及目标函数公式推导。一、XGBoost原理 XGBoost是boosting算法的一种,是以决策树为基础的一种梯度提升算法。通过多轮迭代,每轮迭...
原创
发布博客 2019.06.12 ·
12929 阅读 ·
7 点赞 ·
4 评论 ·
66 收藏

hive获取今天/明天/昨天时间

一、获取今天时间select FROM_UNIXTIME(UNIX_TIMESTAMP()) date二、获取明天时间select regexp_replace(substr(date_add(FROM_UNIXTIME(UNIX_TIMESTAMP()),1),1,10),'-','') date可以通过date_add函数获取今天开始后n天的时间三、获取昨天时...
原创
发布博客 2019.06.04 ·
30663 阅读 ·
4 点赞 ·
3 评论 ·
20 收藏

hive中case..when和row_number()的使用

一、case..when将列值进行条件筛选和转换。select sex,case when sex = 1 then 'man' when sex = 2 then 'woman'when sex = 3 then 'secret'else 'other' end SEXfrom big_data.big_data结果如下:将sex列中数据做了相应转换。二、ro...
原创
发布博客 2019.06.03 ·
2960 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

hive 行转列/列转行

在使用hive对一些日志数据进行解析或者分析的时候会有将行列进行转换的情形,我们将分别进行讨论。一、行转列。原始数据如下: 图一需要转换成如下形式: ...
原创
发布博客 2019.05.27 ·
390 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

pyspark中dataframe切片

想要对pyspark中dataframe实现pandas.dataframe中iloc的切片功能,发现spark中没有相关函数可以直接实现该功能,因此自己琢磨了一个方法。首先创建一个dataframe。dfs = spark.createDataFrame([("a", 1), ("b", 2), ("c", 3)], ["letter", "name"])长这样子±-----±—+|...
原创
发布博客 2019.03.20 ·
6137 阅读 ·
2 点赞 ·
0 评论 ·
9 收藏

tf.nn.embedding_lookup和tf.gather实例

tf.nn.embedding_lookup的作用就是找到embedding data中对应行下的vectortf.nn.embedding_lookup(params, ids, partition_strategy='mod', name=None, validate_indices=True, max_norm=None)#寻找params中索引为ids的vectorimp...
原创
发布博客 2019.02.16 ·
2252 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

tf.truncated_normal和tf.random_normal

import numpy as npimport pandas as pdfrom pandas import Series,DataFrameimport matplotlib.pyplot as pltimport tensorflow as tftf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, s...
原创
发布博客 2019.02.13 ·
553 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

tf.matmul和tf.multiply

tf.matmul为矩阵相乘,tf.multiply为矩阵中对应元素各自相乘
原创
发布博客 2019.02.12 ·
465 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

推荐系统深度学习实战之Wide_Deep

推荐系统与深度学习的结合。在推荐系统中,记忆体现的准确性,而泛化体现的是新颖性,wide_deep能将两者相结合。1、Memorization 和 Generalization 这个是从人类的认知学习过程中演化来的。人类的大脑很复杂,它可以记忆(memorize)下每天发生的事情(麻雀可以飞,鸽子可以飞)然后泛化(generalize)这些知识到之前没有看到过的东西(有翅膀的动物都...
原创
发布博客 2019.02.11 ·
4889 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏
加载更多