- 博客(26)
- 收藏
- 关注
原创 记Apple Music播放列表消失
之后在itunes偏好设置里关掉icloud资料库,然后重新打开,将歌单导入进去又可以同步了。试了很久并且和客服对线也没解决,之前也有这个问题所以使用Itunes将列表备份了。这两天在捣鼓Apple Music,将一些网易云的歌在AM重新整了个歌单。打开电脑端Itunes看了一下,列表还在,但是无法上传到资料库。昨天创完,今天突然发现网页端找不到播放列表了。很迷很疑惑,Mark一下。
2024-08-16 11:44:30 564
原创 昇思25天学习打卡营第12天|基于ResNet50的图片分类任务
首先下载数据集,本次数据集一共有50000张训练图片和10000张评估图片,这里使用官方提供的`mindspore.dataset.Cifar10Dataset`接口来加载数据集,并进行相关图像增强操作。来减轻退化问题,使用ResNet网络可以实现搭建较深的网络结构(突破1000层)ResNet网络层数越深,其训练误差和测试误差越小。我调整了训练轮数.30轮的训练之下,准确率有提升,Accuracy提升到了0.8。最后训练完的预测准确率大概70%左右,这是5epoch的准确率。库来显示图片,并用了。
2024-07-05 14:59:43 262
原创 昇思25天学习打卡营第12天|LSTM+CRF序列标注
实现CRF需要定义两个东西:发射概率和转移概率。发射概率就是模型认为一个词对应某个标签的概率,而转移概率则是从一个标签转移到另一个标签的概率。通过计算整个序列的得分,并比较所有可能的标签序列,CRF能够找出最可能的标签序列。最后通过模型进行预编译和训练500个step,最后进行预测和后处理,能转换回正常可读的标签形式。这次课程使用LSTM+CRF(长短期记忆网络+条件随机场)进行序列标注。首先使用“BIOE”标注实体和非实体。
2024-07-05 14:33:57 248
原创 昇思25天学习打卡营第12天|文本解码原理
通过在每个时间步保留最可能的 num_beams 个词,并从中最终选择出概率最高的序列来降低丢失潜在的高概率序列的风险。一定程度保留最优路径 缺点 无法解决重复问题;在每个时间步𝑡都简单地选择概率最高的词作为当前输出词:,缺点是会省略低概率词后面的高概率词。能根据当前条件概率分布随机选择输出词𝑤_𝑡,文本生成多样性高,但是不连续。最后课程结合通过TopK和TopP采样的优点,提供更平衡的文本生成结果。贪心搜索(Greedy search)束搜索(Beam search)最后是采样(Sampling)
2024-07-05 14:01:11 186
原创 昇思25天学习打卡营第12天|基于MindSpore的GPT2文本摘要
使用内容为新闻正文及其摘要,总计50000个样本的nlpcc2017摘要数据,使用。在训练部分由于提供的算力不是很高训练完大概需要9小时。加载数据集,并将其分为训练集和测试集。方法获得模型的原始输出。
2024-07-05 12:12:31 211
原创 昇思25天学习打卡营第12天|Pix2Pix实现图像转换
这次课程是通过华为昇思Mindspore框架来进行pix2pix模型的训练和推理,这里有官方提供的数据集,这次的数据集经过处理,可以直接使用。个周期后,学习率会线性衰减到0,然后加载的数据集是官方提供好的,运行jupyterLab的cell就可以训练了,训练完再进行推理。生成器(使用U-Net结构)和判别器(使用PatchGAN结构),训练的时候 get_lr。这里是基于Pytorch的pix2pix实现的github链接。函数定义了一个动态调整的学习率调度,开始时使用固定的学习率。
2024-07-05 11:51:48 302
原创 昇思25天学习打卡营第11天|GAN图像生成
在训练的过程中,分别获取训练过程中的损失,并在每轮迭代结束时进行测试,将隐码批量推送到生成器中,以直观地跟踪生成器。来训练生成式对抗网络,我们可以使用该网络模拟生成手写数字图片。首选使用Mindspore的数据处理api来进行数据集处理。模块可视化部分训练数据,之后就能看到训练的详情。课程在判别器和生成器中采用全连接网络架构和。函数将数据转换成字典迭代器,然后使用。最后加载生成器网络的模型生成的图片。激活函数构建网络架构。
2024-07-04 15:43:11 203
原创 昇思25天学习打卡营第11天|Diffusion扩散模型
Diffusion 逆向过程:则需要学习如何逆转正向扩散过程,训练一个神经网络来预测每一步应该去除多少噪声,并再在逆向过程中去除噪声。Diffusion 前向过程:逐步向数据添加小量的高斯噪声,终点: 经过T步后,原始数据完全变为随机噪声。这篇文章,由pytorch迁移到昇思Mindspore框架进行训练和推理。最后生成的图像质量不是很好,可以考虑下优化数据集,设置更多epochs。其中x_t是第t步的数据,β_t是噪声调度参数。Diffusion models的基本原理是。
2024-07-04 15:07:32 119
原创 昇思25天学习打卡营第11天|DCGAN生成漫画头像
这次使用深度卷积生成对抗网络(DCGAN)进行动漫头像的生成。在模型训练部分通过正向传播和反向传播训练判别器和生成器。函数用来创建数据集的迭代器,用于训练过程中的数据输入。课程准备好了70,171张动漫图像的数据集进行训练。使用MindSpore的数据集API进行数据处理。最后训练完成生成头像。
2024-07-04 14:09:50 246
原创 昇思25天学习打卡营第9天|CycleGAN图像风格迁移互换
这次的课程使用CycleGAN(Cycle Generative Adversarial Network) 即循环对抗生成网络来将图像的风格转换成另一种风格,实现了在没有配对示例的情况下学习将图像从源域 X 转换到目标域 Y 的方法。,其标准差为0.02。用于后续网络层的权重初始化,类这个类是卷积、归一化和ReLU激活函数的组合模块。初始化器定义了一个权重初始化对象。类这个类定义了整个生成器网络。最后实例化了两个生成器网络。
2024-07-02 17:34:54 161
原创 昇思25天学习打卡营第9天|基于MindSpore的红酒分类实验
使用的是(k-Nearest Neighbor,KNN)K最近邻分类算法,对于分类问题,最常见的决策规则是多数投票,即在K个邻居中,出现次数最多的类别将被赋予新实例。这次的课程是关于如何使用MindSpore框架实现K近邻(KNN)算法,并将其应用于红酒数据集进行聚类分析的实验教程。在本次课程的红酒分类实验中,根据提供178种样本的13种属性为自变量𝑋,3个类别作为因变量𝑌,最后可将红酒分类。
2024-07-02 16:30:03 171
原创 昇思25天学习打卡营第9天|基于MobileNetv2的垃圾分类
这个实验使用MindSpore框架和MobileNetV2模型进行垃圾分类,支持win_x86和Linux系统,可以在CPU/GPU/Ascend上运行。需要安装MindSpore框架。与去年在华为云服务器上使用ModelArts进行的一个垃圾分类的项目很像。
2024-07-02 16:01:14 168
原创 昇思25天学习打卡营第9天|基于MindNLP+MusicGen生成自己的个性化音乐
这节课是使用MindSpore和MindNLP框架结合MusicGen模型来生成个性化音乐,加载模型的方法是使用。下载MusicGen的模型文件,使用的是Small权重的模型,生成质量会差一些,但速度会快很多。基于文本提示生成音乐,使用AutoProcessor进行预处理。方法加载预训练模型,支持。
2024-07-02 14:28:02 209
原创 昇思25天学习打卡营第9天|Shufflenet图像分类
通过使用华为MindSpore框架来实现和训练ShuffleNetV1模型。它们是ShuffleNetV1实现轻量化和效率的关键。:通过通道重排解决分组卷积中通道间信息隔离的问题。通过分组卷积减少参数量,同时保持输出通道数。
2024-07-02 12:13:31 146
原创 昇思25天学习打卡营第5天|Vision Transformer图像分类
使用ViT模型进行图像分类,ViT模型的主体结构是基于Transformer模型的Encoder部分,但是Normalization部分进行了位置上的调整,最主要的结构依然是Multi-head Attention结构。设置损失函数、优化器、回调函数等,进行模型训练 训练完成之后使用ImageFolderDataset、CrossEntropySmooth和Model等接口进行模型验证。
2024-06-28 14:53:32 252
原创 昇思25天学习打卡营第5天|FCN图像语义分割
使用PASCAL VOC 2012数据集进行标准化处理,以适应网络输入,并且将PASCAL VOC 2012和SDB数据集混合,进行数据增强。并且从包括数据下载、数据预处理、网络构建、训练、评估和推理等各个环节,都有实际的代码和注释,很方便直观。导入VGG-16预训练权重:使用预训练权重初始化网络,加速收敛。类,用于加载和预处理数据,包括数据增强和格式化。
2024-06-28 14:10:22 272
原创 昇思25天学习打卡营第5天|使用静态图加速
动态图模式(PyNative模式)的特点是在计算过程中同时构建计算图,它符合Python的解释执行方式,便于调试,但难以进行计算图的优化。静态图模式(Graph模式)将计算图的构建和计算过程分开。它允许编译器进行全局优化,适合需要高性能的场景。昇思MindSpore框架中,默认情况下是以动态图模式运行,但也支持手工切换为静态图模式。可以使用jit或全局。设置来启用静态图模式。
2024-06-28 11:51:56 228
原创 昇思25天学习打卡营第5天|保存与加载
来保存模型为MindIR格式,它保存了模型结构、权重和输入的shape信息。不同的是PyTorch使用。方法来加载,可以保存整个模型或仅保存模型的权重,不强制保存输入的shape信息。来保存模型或模型的状态字典(state_dict),使用。MindSpore使用。
2024-06-28 11:37:46 206
原创 昇思25天学习打卡营第5天|模型训练
可以自动计算损失函数对模型参数的梯度,这是进行反向传播和参数更新的基础。函数用于自动微分,跟PyTorch的。和TensorFlow的。MindSpore的。
2024-06-28 11:25:58 126
原创 昇思25天学习打卡营第2天|网络构建
华为昇思Mindspore网络构建学习,跟目前流行的深度学习框架不同,PyTorch中网络通常通过定义一个继承自。
2024-06-26 10:59:21 140
原创 昇思25天学习打卡营第2天|数据变换Transforms
模块,专门用于数据变换,同时也支持支持一系列通用Transforms。今天学习下昇思Mindspore课程的数据变换transforms。可以立即看到变换的效果,有助于调试。
2024-06-26 10:49:18 122
原创 昇思25天学习打卡营第2天|数据集Dataset
CSDN和华为昇思Mindspore25天学习打卡营,跟去年在华为云参加的昇思MindSpore产品体验活动类似,也是通过昇思MindSpore进行数据集处理以及推理,Jupyter内置了使用说明和示例代码,很直观的体现了处理过程。
2024-06-26 10:13:51 115
原创 昇思25天学习打卡营第2天|张量Tensor
CSDN和华为昇思Mindspore25天学习打卡营,之前整过minespore的安装,在本地跑过一些简单demo,张量()是MindSpore网络运算中的基本数据结构,不过还是一知半解....
2024-06-26 09:48:43 161
原创 昇思25天学习打卡营第1天|快速入门
MindSpore的API训练和之前在在线算力平台训练So-VITS-SVC 4.0的感觉还挺像的。CSDN和华为昇思Mindspore25天学习打卡营。也是使用Jupyter进行训练和推理。
2024-06-25 18:06:07 105
原创 昇思25天学习打卡营第1天|基本介绍
用Jupyter形式挺直观的,也不用去配置和下载环境,详细的文档和代码配置好,也可以直接用华为的云服务器,直接运行就行了,挺OK的。CSDN和华为昇思Mindspore25天学习打卡营。
2024-06-25 13:39:45 72
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人