系统化学势的三个热力学偏导

本文探讨了系统化学势的不同热力学表示,包括与内能U、焓H、自由能F和吉布斯能G的关系。通过吉布斯函数的广延性质,说明了化学势μ等于摩尔吉布斯函数g。内容详细阐述了热力学方程在系统分析中的应用,并引用了谢名春在《大学物理》上的相关研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

\[\mu  = {\left[ {\frac{ {\partial U}}{ {\partial n}}} \right]_{S,V}} = {\left[ {\frac{ {\partial H}}{ {\partial n}}} \right]_{S,P}} = {\left[ {\frac{ {\partial F}}{ {\partial n}}} \right]_{T,V}} = {\left[ {\frac{ {\partial G}}{ {\partial n}}} \right]_{T,P}}\]

    单元开放系统有4 个彼此等价的热力学方程, 它们包含了这种系统的全部热力学信息。由它们出发, 系统化学势μ 可表示成我们熟知的以上形式。由于系统的吉布斯函数G 是广延量, 因而很容易通过G(T , p , n )=ng (T , p)得出\[{\left[ {\frac{ {\partial G}}{ {\partial n}}} \right]_{T,P}} = g(T,p)\]。这就是说, 化学势μ 等于系统的摩尔吉布斯函数g。

        U =U(S , V , n) 内能作为广延量, 其广延性体现在 S , V , n 这三个热力学量上.当取 T , p , n 为自变量时, S= S(T , p , n)、V =V(T , p , n), 也就是说, 系统的内能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值