\[\mu = {\left[ {\frac{ {\partial U}}{ {\partial n}}} \right]_{S,V}} = {\left[ {\frac{ {\partial H}}{ {\partial n}}} \right]_{S,P}} = {\left[ {\frac{ {\partial F}}{ {\partial n}}} \right]_{T,V}} = {\left[ {\frac{ {\partial G}}{ {\partial n}}} \right]_{T,P}}\]
单元开放系统有4 个彼此等价的热力学方程, 它们包含了这种系统的全部热力学信息。由它们出发, 系统化学势μ 可表示成我们熟知的以上形式。由于系统的吉布斯函数G 是广延量, 因而很容易通过G(T , p , n )=ng (T , p)得出\[{\left[ {\frac{ {\partial G}}{ {\partial n}}} \right]_{T,P}} = g(T,p)\]。这就是说, 化学势μ 等于系统的摩尔吉布斯函数g。
U =U(S , V , n) 内能作为广延量, 其广延性体现在 S , V , n 这三个热力学量上.当取 T , p , n 为自变量时, S= S(T , p , n)、V =V(T , p , n), 也就是说, 系统的内能