Prompt实战之构建语义搜索引擎 6)问答系统构建与响应生成(QA Chain)

Prompt实战之构建语义搜索引擎 6)问答系统构建与响应生成(QA Chain)

在前面几章中,我们完成了文档加载、分割、向量化、索引与检索。在这一章,我们将构建一个端到端的问答系统(Question-Answering Chain),它能够基于用户问题,从语料中找出相关信息,并生成流畅自然的回答。


6.1 问答系统的结构

一个典型的问答系统(Retrieval QA)的流程如下:

用户问题 → Retriever(文档检索) → LLM(答案生成)→ 回复用户

LangChain 中,我们可以使用 RetrievalQA 模块实现这一完整流程。


6.2 构建 QA Chain

基本示例

from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI

qa_chain = RetrievalQA.from_chain_type(
    llm=ChatOpenAI(temperature=0),
    retriever=vectorstore.as_retriever(),
    return_source_documents=True
)

提问并获得答案

query = "介绍一下图灵测试的基本原理。"
result = qa_chain(query)

print("答案:", result["result"])

6.3 可选参数说明

参数名作用
return_source_documents=True是否返回原始参考文档(调试/溯源)
chain_type="stuff"如何组合文档(可选:stuff, map_reduce, refine 等)

6.4 Chain 类型比较

类型特点适合场景
stuff简单拼接全部文档给 LLM文档少、回答简洁场景
map_reduce每个文档单独回答,最后合并大量文档、需要稳定答案
refine基于初始答案逐步优化结构化问答、摘要类任务

建议从 stuff 开始,如果输出不理想再切换为高级类型。


6.5 自定义 Prompt 提升效果

你可以自定义提示模板来引导回答风格、输出格式等。

示例:限制回答字数

from langchain.prompts import PromptTemplate

prompt_template = PromptTemplate.from_template("""
你是一个专业中文学术助手。请基于以下内容简洁回答用户问题,控制在100字内。

上下文:
{context}

问题:
{question}
""")

qa_chain = RetrievalQA.from_chain_type(
    llm=ChatOpenAI(temperature=0),
    retriever=vectorstore.as_retriever(),
    chain_type_kwargs={"prompt": prompt_template}
)

6.6 回答结果结构说明

一个典型的返回结果如下:

{
  "result": "图灵测试是一种用于判断机器是否具有智能的方法...",
  "source_documents": [Document(page_content="...", metadata={...}), ...]
}

你可以将 source_documents 渲染为参考文献、悬浮提示等,增强用户信任感。


6.7 问题优化(Query Refinement)

LangChain 还支持对用户输入的问题进行改写(Rephrasing),提升检索效果:

from langchain.chains import ConversationalRetrievalChain

qa = ConversationalRetrievalChain.from_llm(
    llm=ChatOpenAI(),
    retriever=vectorstore.as_retriever()
)

chat_history = []
query = "它是怎么工作的?"
result = qa({"question": query, "chat_history": chat_history})

chat_history.append((query, result["answer"]))
print(result["answer"])

6.8 本章小结

你已经完成了语义问答系统的最后一环:

  • 利用检索器和 LLM 构建问答链(RetrievalQA);
  • 理解不同的 Chain 类型与适用场景;
  • 可以通过 Prompt 与 Chain 参数提升系统输出;
  • 掌握上下文式问答(多轮 QA)基本技巧。

小贴士 💡

  • 如果回答质量不稳定,可尝试:

    • 减少检索的文档数量
    • 使用 map_reduce 代替 stuff
    • 使用更强大的 Embedding 模型
  • 可在 UI 中展示参考片段,提升用户信任与可追溯性。


练习区 🛠️

  1. 构建一个 RetrievalQA Chain,回答“中国近代史的发展阶段”。
  2. 将 chain_type 切换为 "map_reduce",观察回答质量变化。
  3. 自定义 Prompt:要求答案以“首先、其次、最后”结构回答问题。
  4. 使用 ConversationalRetrievalChain 进行连续对话,记录 chat_history。
### 构建基于大型语言模型的AI搜索引擎的技术架构实现方案 构建基于大型语言模型(LLM)的AI搜索引擎是一个复杂的任务,涉及多个技术和组件的集成。以下是关于其技术架构和实现方案的具体说明。 #### 1. **核心技术架构** 一个典型的基于大语言模型的AI搜索引擎通常由以下几个部分组成: - **数据源层** 数据源层负责存储和管理所有可被索引的信息资源。这些信息可能来自结构化数据库、半结构化的文档集合或者非结构化的多媒体文件[^3]。为了支持多样性的查询需求,需要设计一个多模态的数据接入方式,以便处理文本、表格以及图像等多种形式的内容。 - **检索模块 (Retrieval Module)** 检索模块的作用是从海量数据集中快速找到用户提问最相关的片段或记录。对于传统的搜索引擎而言,这一步主要依赖于关键词匹配;但在现代的大规模预训练语言模型驱动下,则可以通过语义相似度计算来提升精度。一种流行的方法叫做“检索增强生成(RAG),即先利用向量空间中的近邻查找定位候选集,再交由下游的语言生成器完成最终的回答合成工作[^4]。 - **对话理解解析引擎** 此部分专注于分析用户的输入意图并将其转化为适合内部处理的形式表示。例如,当接收到自由格式的问题描述时,系统需识别其中的关键实体及其关系,并据此制定相应的搜索策略[^2]。 - **响应生成单元** 基于前面几步得到的结果,此环节运用先进的神经网络架构如Transformer变种来进行高质量回复的创作。值得注意的是,在某些场景下还应考虑加入额外的记忆机制或是外部工具调用来进一步优化性能表现[^1]。 #### 2. **具体实施步骤** 下面列举了一些关键的操作要点供参考: ```python from langchain import PromptTemplate, LLMChain from transformers import pipeline def initialize_search_engine(): """初始化AI搜索引擎""" model_name = "gpt-3.5-turbo" retriever_config = {"method": "multi-vector", "dimensions": 768} # 加载必要的NLP管道和服务接口 summarizer = pipeline('summarization') question_answerer = pipeline('question-answering') return { 'model': model_name, 'retriever_settings': retriever_config, 'nlp_pipelines': {'summarize': summarizer, 'qa': question_answerer}, } # 示例:定义提示模板用于指导LLMs行为调整 template = """ You are an expert assistant helping users find information. Given the following context: {context}, answer this query: {query}. If you don't know the answer, just say that you do not have enough info. """ prompt_template = PromptTemplate(template=template, input_variables=["context", "query"]) llm_chain = LLMChain(prompt=prompt_template) print(initialize_search_engine()) ``` 上述代码展示了如何设置基本框架以及创建自定义Prompt以引导大规模语言模型按照特定逻辑运作的过程。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

这是Jamon

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值