jupyter-notebook tab自动补全、查看函数提示

目录

1、打开anaconda prompt 窗口

2、激活所用环境 

3、输入以下命令,并等待执行完成

4、重启jupyter,重启后会有Nbextensions选项,参考图中两个选项

5、现在tab键就可以自动补全了

6、函数提示

(1)方式1: 函数名称+ ?

(2)方式2:help(函数名称)

(3)方式3:鼠标点击函数,然后 shift + tab, 也可以两次shift + tab


1、打开anaconda prompt 窗口

2、激活所用环境 

     conda activate env_name

3、输入以下命令,并等待执行完成

      pip install jupyter_contrib_nbextensions -i https://pypi.mirrors.ustc.edu.cn/simple

      jupyter contrib nbextension install --user

      pip install --user jupyter_nbextensions_configurator

      jupyter nbextensions_configurator enable --user

4、重启jupyter,重启后会有Nbextensions选项,参考图中两个选项

5、现在tab键就可以自动补全了

6、函数提示

(1)方式1: 函数名称+ ?

(2)方式2:help(函数名称)

(3)方式3:鼠标点击函数,然后 shift + tab, 也可以两次shift + tab

             右上角有三个 小符号,可以分别点击试一下

### Deformable 3D Gaussians (3DGS): 高保真单目动态场景重建 #### 背景与动机 随着计算机视觉技术的发展,高精度三维场景重建成为研究热点之一。然而,在处理动态场景时,传统方法往往面临计算复杂度高、实时性差以及难以适应快速变化环境等问题。为此,《Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene Reconstruction》提出了基于可变形3D高斯分布的方法来解决这些问题[^1]。 #### 方法概述 该论文的核心思想是利用参数化的3D高斯函数表示物体表面及其属性(如颜色)。通过优化这些高斯分布的位置、方向和形状,可以实现对动态场景的高度逼真的建模。具体来说: - **模型结构**: 使用一组稀疏控制点定义整个场景中的几何信息,并结合局部形变场调整每个高斯核的具体形态。 - **能量小化框架**: 提出了一个新的目标函数用于联合估计全局运动轨迹与个体对象的状态更新规则。 - **高效渲染管线**: 设计了一种新颖的前向传播机制以加速终图像合成过程的同时保持高质量输出效果。 #### 技术贡献 相比之前的工作,本文主要有以下几个方面的改进: 1. 引入了灵活可控的变形策略使得系统能够更好地捕捉到复杂的非刚体动作序列; 2. 开发了一个端到端训练流程从而简化了先前依赖手工设定超参的操作步骤 ; 3. 实验验证表明新方案不仅具备更强泛化能力而且运行效率也得到了显著提升. ```python import numpy as np def deform_gaussian(mean, cov_matrix, deformation_field): """ Apply a deformation field to modify the mean and covariance matrix of a Gaussian. Args: mean (np.ndarray): Original mean vector of shape (n,) cov_matrix (np.ndarray): Covariance matrix of shape (n,n) deformation_field (function): Function that takes position vectors and returns modified ones Returns: tuple: Modified mean and covariance after applying deformation """ new_mean = deformation_field(mean) jacobian = compute_jacobian(deformation_field, mean) # Jacobian at 'mean' new_cov = jacobian @ cov_matrix @ jacobian.T return new_mean, new_cov def compute_jacobian(func, point): """Numerically approximate the Jacobian.""" epsilon = 1e-6 dims = len(point) jac = np.zeros((dims,dims)) for i in range(dims): delta = np.zeros_like(point);delta[i]=epsilon f_plus=func(point+delta) f_minus=func(point-delta) jac[:,i]=(f_plus-f_minus)/(2*epsilon) return jac ``` 上述代码片段展示了如何应用给定的变形字段去改变一个标准正态随机变量的行为特性——即其均值位置以及协方差矩阵形式都会受到影响而发生变化。 --- ### SC-GS: Sparse-Controlled Gaussian Splatting 的补充说明 除了《Deformable 3D Gaussians...》之外,《SC-GS: Sparse-Controlled Gaussian Splatting for Editable Dynamic Scenes》同样值得关注。它进一步探讨了通过引入稀疏约束条件改善编辑友好型动态场景的表现力问题[^2]。这种方法允许用户更方便地修改已构建好的虚拟世界内容而不破坏整体一致性。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值