MapReduce(四)

                                        MapReduce(四)

    1.shuffle过程

    2.map中setup,map,cleanup的作用。

一.shuffle过程

            https://blog.csdn.net/techchan/article/details/53405519

来张图吧


二.map中setup,map,cleanup的作用。

  • setup(),此方法被MapReduce框架仅且执行一次,在执行Map任务前,进行相关变量或者资源的集中初始化工作。若是将资源初始化工作放在方法map()中,导致Mapper任务在解析每一行输入时都会进行资源初始化工作,导致重复,程序运行效率不高!
  • run()映射k,v 数据
  • cleanup(),此方法被MapReduce框架仅且执行一次,在执行完毕Map任务后,进行相关变量或资源的释放工作。若是将释放资源工作放入方法map()中,也会导致Mapper任务在解析、处理每一行文本后释放资源,而且在下一行文本解析前还要重复初始化,导致反复重复,程序运行效率不高!

代码测试 Cleanup的作用

package com.huhu.day04;


import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.net.URI;
import java.util.HashSet;


import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.filecache.DistributedCache;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;


/**
 * 在这里进行wordCount统计 在一遍英语单词中 不统计 i have 这两个单词
 * 
 * @author huhu_k
 *
 */
public class TestCleanUpEffect extends ToolRunner implements Tool {


	private Configuration conf;


	public static class MyMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
		private Path[] localCacheFiles;
		// 不通过MapReduce过滤计算的word
		private HashSet<String> keyWord;


		@Override
		protected void setup(Context context) throws IOException, InterruptedException {
			Configuration conf = context.getConfiguration();
			localCacheFiles = DistributedCache.getLocalCacheFiles(conf);
			keyWord = new HashSet<>();


			for (Path p : localCacheFiles) {
				BufferedReader br = new BufferedReader(new FileReader(p.toString()));
				String word = "";
				while ((word = br.readLine()) != null) {
					String[] str = word.split(" ");
					for (String s : str) {
						keyWord.add(s);
					}
				}
				br.close();
			}
		}


		@Override
		protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
			String[] line = value.toString().split(" ");
			for (String str : line) {
				for (String k : keyWord) {
					if (!str.contains(k)) {
						context.write(new Text(str), new IntWritable(1));
					}
				}
			}
		}
		@Override
		protected void cleanup(Mapper<LongWritable, Text, Text, IntWritable>.Context context)
				throws IOException, InterruptedException {
		}


	}


	public static class MyReduce extends Reducer<Text, IntWritable, Text, IntWritable> {


		@Override
		protected void reduce(Text key, Iterable<IntWritable> values, Context context)
				throws IOException, InterruptedException {
			int sum = 0;
			for (IntWritable v : values) {
				sum += v.get();
			}
			context.write(key, new IntWritable(sum));
		}


	}


	public static void main(String[] args) throws Exception {
		TestCleanUpEffect t = new TestCleanUpEffect();
		Configuration conf = t.getConf();
		String[] other = new GenericOptionsParser(conf, args).getRemainingArgs();
		if (other.length != 2) {
			System.err.println("number is fail");
		}
		int run = ToolRunner.run(conf, t, args);
		System.exit(run);
	}


	@Override
	public Configuration getConf() {
		if (conf != null) {
			return conf;
		}
		return new Configuration();
	}


	@Override
	public void setConf(Configuration arg0) {


	}


	@Override
	public int run(String[] other) throws Exception {
		Configuration con = getConf();
		DistributedCache.addCacheFile(new URI("hdfs://ry-hadoop1:8020/in/advice.txt"), con);


		Job job = Job.getInstance(con);
		job.setJarByClass(TestCleanUpEffect.class);
		job.setMapperClass(MyMapper.class);
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(IntWritable.class);


		job.setReducerClass(MyReduce.class);
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);


		FileInputFormat.addInputPath(job, new Path(other[0]));
		FileOutputFormat.setOutputPath(job, new Path(other[1]));


		return job.waitForCompletion(true) ? 0 : 1;
	}


}

我是使用在setup中过滤另一个文件:advice 然后通过运行,wordCount时,adivce中有的word则过滤不计算。我的数据分别是:


运行结果:


测试mapper中cleanup的作用

package com.huhu.day04;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class TestCleanUpEffect extends ToolRunner implements Tool {

	private Configuration conf;

	public static class MyMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
		private Map<String, Integer> map = new HashMap<String, Integer>();

		@Override
		protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
			String[] line = value.toString().split(" ");
			for (String s : line) {
				if (map.containsKey(s)) {
					map.put(s, map.get(s) + 1);
				} else {
					map.put(s, 1);
				}
			}
		}

		@Override
		protected void cleanup(Context context) throws IOException, InterruptedException {
			for (Map.Entry<String, Integer> m : map.entrySet()) {
				context.write(new Text(m.getKey()), new IntWritable(m.getValue()));
			}
		}
	}

	public static class MyReduce extends Reducer<Text, IntWritable, Text, IntWritable> {

		@Override
		protected void setup(Context context) throws IOException, InterruptedException {
		}

		@Override
		protected void reduce(Text key, Iterable<IntWritable> values, Context context)
				throws IOException, InterruptedException {
			for (IntWritable v : values) {
				context.write(key, new IntWritable(v.get()));
			}
		}

		@Override
		protected void cleanup(Context context) throws IOException, InterruptedException {
		}
	}

	public static void main(String[] args) throws Exception {
		TestCleanUpEffect t = new TestCleanUpEffect();
		Configuration conf = t.getConf();
		String[] other = new GenericOptionsParser(conf, args).getRemainingArgs();
		if (other.length != 2) {
			System.err.println("number is fail");
		}
		int run = ToolRunner.run(conf, t, args);
		System.exit(run);
	}

	@Override
	public Configuration getConf() {
		if (conf != null) {
			return conf;
		}
		return new Configuration();
	}

	@Override
	public void setConf(Configuration arg0) {

	}

	@Override
	public int run(String[] other) throws Exception {
		Configuration con = getConf();
		Job job = Job.getInstance(con);
		job.setJarByClass(TestCleanUpEffect.class);
		job.setMapperClass(MyMapper.class);
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(Text.class);

		// 默认分区
		job.setPartitionerClass(HashPartitioner.class);

		job.setReducerClass(MyReduce.class);
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(Text.class);

		FileInputFormat.addInputPath(job, new Path(other[0]));
		FileOutputFormat.setOutputPath(job, new Path(other[1]));

		return job.waitForCompletion(true) ? 0 : 1;
	}

}

使用map来处理数据,减小reducer的压力,并使用mapper中的cleanup方法

运行结果





打印孩子的所有父母(爷爷,姥爷,奶奶,姥姥),看下数据


package com.huhu.day04;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

/**
 * 分代计算 将 孩子 父母 奶奶 姥姥 分为一代
 * 
 * @author huhu_k
 *
 */
public class ProgenyCount extends ToolRunner implements Tool {

	public static class MyMapper extends Mapper<LongWritable, Text, Text, Text> {

		@Override
		protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
			String[] line = value.toString().split(" ");
			String childname = line[0];
			String parentname = line[1];
			if (line.length == 2 && !value.toString().contains("child")) {
				context.write(new Text(childname), new Text("t1:" + childname + ":" + parentname));
				context.write(new Text(parentname), new Text("t2:" + childname + ":" + parentname));
			}
		}
	}

	public static class MyReduce extends Reducer<Text, Text, Text, Text> {

		boolean flag = true;

		@Override
		protected void setup(Context context) throws IOException, InterruptedException {
		}

		@Override
		protected void reduce(Text key, Iterable<Text> values, Context context)
				throws IOException, InterruptedException {
			if (flag) {
				context.write(new Text("child1"), new Text("parent1"));
				flag = false;
			}

			List<String> child = new ArrayList<>();
			List<String> parent = new ArrayList<>();

			for (Text v : values) {
				String line = v.toString();
				System.out.println(line+"**");
				if (line.contains("t1")) {
					parent.add(line.split(":")[2]);
					System.err.println(line.split(":")[2]);
				} else if (line.contains("t2")) {
					System.out.println(line.split(":")[1]);
					child.add(line.split(":")[1]);

				}
			}
			for (String c : child) {
				for (String p : parent) {
					context.write(new Text(c), new Text(p));
				}
			}
		}
	}

	public static void main(String[] args) throws Exception {
		ProgenyCount t = new ProgenyCount();
		Configuration conf = t.getConf();
		String[] other = new GenericOptionsParser(conf, args).getRemainingArgs();
		if (other.length != 2) {
			System.err.println("number is fail");
		}
		int run = ToolRunner.run(conf, t, args);
		System.exit(run);
	}

	@Override
	public Configuration getConf() {
		return new Configuration();
	}

	@Override
	public void setConf(Configuration arg0) {

	}

	@Override
	public int run(String[] other) throws Exception {
		Configuration con = getConf();
		Job job = Job.getInstance(con);
		job.setJarByClass(ProgenyCount.class);
		job.setMapperClass(MyMapper.class);
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(Text.class);

		// 默认分区
		// job.setPartitionerClass(HashPartitioner.class);

		job.setReducerClass(MyReduce.class);
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(Text.class);

		FileInputFormat.addInputPath(job, new Path("hdfs://ry-hadoop1:8020/in/child.txt"));
		Path path = new Path("hdfs://ry-hadoop1:8020/out/mr");
		FileSystem fs = FileSystem.get(getConf());
		if (fs.exists(path)) {
			fs.delete(path, true);
		}
		FileOutputFormat.setOutputPath(job, path);

		return job.waitForCompletion(true) ? 0 : 1;
	}

}

转载于:https://www.cnblogs.com/meiLinYa/p/9252103.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值