题意
给出一棵二叉树,树的每个节点上都有指定数量的金币。现在问,通过把金币从相邻节点间传递,每次只能移动一枚硬币,最少需要移动多少次,能够使得每个非空节点有且只有一枚硬币?
解法
我们定义函数dfs(x)表示节点x给父节点的金币个数:正数代表子节点给父节点,负数代表子节点从父节点要过来金币。那么这个题就是求 全部非根结点需要移动次数的绝对值之和。即sum(abs(dfs(非根结点)))。下面用例子讲解:
看上面这个例子,
dfs(左孩子)= -1:表示左孩子要从父节点那要过来1个。
dfs(右孩子)=-1:同理。
所以总移动次数=abs(dfs(左孩子))+abs(dfs(右孩子))=2。注意:我们要对孩子节点的dfs值取绝对值的。因为送给父节点还是要过来都是要那么多操作次数的
再看个例子,如上图,dfs(左孩子)= 2,dfs(右孩子)=-1。总移动次数=dfs(左孩子)+abs(dfs(右孩子))=2+1=3。
所以这个题就是求 全部非根结点需要移动的次数的绝对值之和。为啥是非根呢?因为如果子节点都是1了,根结点肯定是1了嘛。
代码实现
我们还是看个例子:
如上图,我们从下往上考虑每个小子树。首先考虑左下角的那个0:
- 他没有左子树,那么他的左子树不需要移动硬币。即dfs(l) = 0;
- 他的右子树有三个节点,那么需要移动两次来达到1,因为他自己需要留一个嘛。即dfs( r) = 2
- 那现在左下角这个0有2个硬币了,他需要移动的硬币数=左孩子给他的+右孩子给他的+他自己的-1。
- 其他以此类推。
注意这个dfs(x)并不是我们要的结果,我们要的结果是非节点的移动次数绝对值。所以上代码。
python代码
class Solution(object):
def distributeCoins(self, root):
self.ans = 0
def dfs(node):
if not node: return 0
L, R = dfs(node.left), dfs(node.right)
self.ans += abs(L) + abs(R)
return node.val + L + R - 1
dfs(root)
return self.ans
java代码
class Solution {
int ans;
public int distributeCoins(TreeNode root) {
ans = 0;
dfs(root);
return ans;
}
public int dfs(TreeNode node) {
if (node == null) return 0;
int L = dfs(node.left);
int R = dfs(node.right);
ans += Math.abs(L) + Math.abs(R);
return node.val + L + R - 1;
}
}