题意: 一个N*M矩阵,从左上角移动,每个矩阵的格子有不同值,只能向右或者向下走,向下一次只能走一格。但是如果向右走,则每次可以走一格或者走到该行的列数是当前所在列数倍数的格子,即:如果当前格子是(x,y),下一步可以是(x+1,y),(x,y+1)或者(x,y*k) 其中k>=1。求到达矩阵右下方最大值。
思路:对于lemon的移动,其当前值有三个因素决定,其状态方程是:dp[i][j] = max(dp[i-1][j],dp[i][j-1],dp[i][k]) + a[i][j]。a[i][j]表示他第i行第j列所能达到的值。dp[i][j]表示第i行第j列的最大值。dp[i][k]表示其向右移动的值。
感想:对于状态方程,难点还是在向右可以移动j的倍数,关键要找到dp[i][k],才能得到状态方程。
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
int dp[21][1001];
int a[21][1001];
int n,m;
void fun(){
int i,k,j;
dp[0][1]=0;
dp[1][0]=0;
for(i=1;i<=n;++i){
for(j=1;j<=m;++j){
int temp=-111;
for(k=1;k<j;++k){
if(j%k==0)
temp=max(temp,dp[i][k]);
}
temp=max(temp,dp[i-1][j]);
temp=max(temp,dp[i][j-1]);
dp[i][j]=a[i][j]+temp;
}
}
}
int main(){
int i,j,t;
cin>>t;
while(t--){
memset(dp,-111,sizeof(dp));
cin>>n>>m;
for(i=1;i<=n;i++){
for(j=1;j<=m;j++){
cin>>a[i][j];
}
}
fun();
cout<<dp[n][m]<<endl;
}
return 0;
}