Catalan数

Catalan数

预备知识:

$ $

对角线剖分:

n边形的剖分

\(A_1 A_2 A_3 ··· A_n\)是凸n边形.用\(n-3\)条(除端点外)无公共点的对角线,可以将它剖分为三角形,这样的剖分我们称它为对角线剖分.显然,对角线剖分的方法未必只有一种.例如上图,6边形的对角线剖分共有14种.我们将凸n边形的对角线剖分的种数,记为\(T_n-2\).容易知道,

$$ T_2 =2,T_3 =5,T_4 =14 $$

为了能够得到统一的通项公式,通常约定,

$$ T_0 = T_1 =1 $$

$ T_n $通常称为Catalan数,由大神Eugene Charles Catalan命名.据考证,Catalan数最早是由L. Eular于1753年在解决凸包划分成三角形问题的时候提出的(也有说法称是蒙古的明安图在1730年提出的).然而Eugen Otto Erwin Netto在他的论文中将该数归功于Catalan.

通项公式:

为了深度了解Catalan数的性质,我们希望求出\(T_n\)的公式.

1610380-20190413135624647-647543803.png

只要稍微研究一下,很容易想到\(T_n\)的递推式.如上图,考虑以\(n\)边形的第\(1\)条边引出的三角形(红色三角形).这个三角形将\(n\)边形分成两个多边形,设其中一个为\(k+1\)边形(为什么不设为\(k\)边形?),则另一个为\(n-k+1\)边形.因此,我们得到

$$ T_{n-2}=\sum_{k=1}^n T_{k-1} \bullet T_{n-k-1} $$

(这里我们用到了$ T_0 = T_1 =1 $的规定)

额,好像略过于复杂了.很多人肯定都知道实际上\(T_n=\frac{1}{n+1} C_{2n}^n\),可以验证这个通项满足上式.然而我们这里还不知道这个事实,于是我们在这里遇到了瓶颈,好像没办法继续下去了.先别着急,我们来看看下面的问题.

添括号

如果\(*\)是一个运算,且\(*\)不满足结合律,那么,表达式 $ a_1 * (a_2 * a_3) $ 与 $ (a_1 * a_2) * a_3 $ 有不同的值.

我们想知道,在表达式

$$ a_1 * a_2 * a_3 * ··· * a_n $$

中,适当增加\(n-2\)个括号,可以得出多少个不同的结果.

事实上,共有\(T_{n-1}\)种不同的结果.为了证明这个结论,想到可以构造一个从对角线分割的方法到添括号的方法的一一映射\(f\).这个\(f\)定义如下:

1610380-20190415131414591-1459448094.png

将凸n+1边形的前\(n\)条边顺次编号\(a_1,a_2,···,a_n\),剩下那条边编号为0.在对角线剖分中,对角线\(l\)将多边形分成两个部分.在不含边\(0\)的那一部分中,有两条边\(a_i\)\(a_j\)\(l\)有公共点,我们就在表达式中添加一对从\(a_i\)\(a_j\)的括号.于是,这\(n-2\)条对角线对应了\(n-2\)对互不相同的括号.显然,这\(n-2\)对括号是合法的.于是,只需证明\(f\)一一映射即可.

\(f\)是单射:因为在剖分\(x \neq x'\)时,\(x\)至少有一条对角线不在\(x'\)中出现,所以在\(f(x)\)中有一处括号与\(f(x')\)不同,即\(f(x) \neq f(x')\).

\(f\)是满射:若增添了\(n-2\)对括号后得到了\(y\),对于从\(a_i\)\(a_j\)的一对括号,在凸\(n\)边形中\(a_i\)的始点和\(a_j\)的终点间连一条对角线.这样,一个添括号的方法\(y\)可以唯一对应地产生一个对角线剖分\(x\),并且\(f(x)=y\).

至此,我们顺利地证明了添括号的方法恰好有\(T_{n-1}\)种,于是要得到\(T_n\)的公式,只需求出添括号的方法数.然而,求出这个我们还需要费些周章.

黑白棋子

1610380-20190416205340126-1530775763.png

\(2n\)个棋子排成一列,其中\(n\)个黑棋子,\(n\)个白棋子,且从左往右数过来数到的黑棋子个数不多于白棋子个数.求这样满足要求的排列的个数.

设排列的个数为\(A_n\)只需要稍微枚举一下,很容易发现

$ A_1=1 $ $ A_2=2 $ $ A_3=5 $ $ A_4=14 $

发现正好与\(T_n\)相同!于是我们猜测\(A_n=T_n\).为了证明这个结论,我们还是需要构造一个一一映射\(f\):

Whitworth路线

1610380-20190413142315763-2023170644.png

我们知道,从原点\((0,0)\)沿坐标网走到格点\((n,n)\)的路线共有\(C_{2n}^n\)条.在这\(C_{2n}^n\)条路线中,不在直线\(y=x\)上方出现的路线称为Whitworth路线,简称W线.对于一条W线,我们通常将路线中向东走一个单位长度表示为"E",向北走一个单位长度表示为"N".

如上图,就是一个\(n=3\)时的W线,可以表示成

$$ ENEENN $$

那么,共有多少条Whitworth路线?

显然,从左往右

转载于:https://www.cnblogs.com/Feng230/p/10696731.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值