自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 U-Net 介绍

U-Net 是一种用于图像分割的深度学习架构,在生物医学图像分析等领域取得了巨大的成功。

2024-10-18 13:43:54 1822

原创 YOLOv5

YOLOv5 是一种先进的目标检测算法,以其高效性、准确性和易用性在计算机视觉领域备受瞩目。

2024-10-18 13:41:26 500

原创 YOLOv3 与 YOLOv4 总结

目标检测在计算机视觉领域中具有至关重要的地位,YOLO(You Only Look Once)系列算法以其高效性和准确性而备受关注。以下是对 YOLOv3 和 YOLOv4 的总结。YOLOv3 是对 YOLOv2 的进一步改进和优化,在保持快速检测速度的同时,提高了检测精度。它仍然采用将目标检测问题转化为回归问题的思路,将输入图像划分成网格,每个网格预测多个边界框及其对应的类别概率和置信度。YOLOv4 是在 YOLOv3 的基础上进行了大量的改进和优化,进一步提高了检测精度和速度。

2024-10-11 19:20:08 1397

原创 【无标题】

YOLOv1 是一种将目标检测问题转化为回归问题的算法。它将输入图像划分为 S×S 的网格,每个网格预测 B 个边界框以及这些边界框的置信度和 C 个类别概率。最终通过一次前向传播即可得到整个图像的目标检测结果。YOLOv2 在 YOLOv1 的基础上进行了改进,提高了检测精度和速度。它引入了一些新的技术,如批量归一化(Batch Normalization)、高分辨率分类器、多尺度训练等。

2024-10-11 19:18:41 1327

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除