- 博客(4)
- 收藏
- 关注
原创 YOLOv3 与 YOLOv4 总结
目标检测在计算机视觉领域中具有至关重要的地位,YOLO(You Only Look Once)系列算法以其高效性和准确性而备受关注。以下是对 YOLOv3 和 YOLOv4 的总结。YOLOv3 是对 YOLOv2 的进一步改进和优化,在保持快速检测速度的同时,提高了检测精度。它仍然采用将目标检测问题转化为回归问题的思路,将输入图像划分成网格,每个网格预测多个边界框及其对应的类别概率和置信度。YOLOv4 是在 YOLOv3 的基础上进行了大量的改进和优化,进一步提高了检测精度和速度。
2024-10-11 19:20:08
1397
原创 【无标题】
YOLOv1 是一种将目标检测问题转化为回归问题的算法。它将输入图像划分为 S×S 的网格,每个网格预测 B 个边界框以及这些边界框的置信度和 C 个类别概率。最终通过一次前向传播即可得到整个图像的目标检测结果。YOLOv2 在 YOLOv1 的基础上进行了改进,提高了检测精度和速度。它引入了一些新的技术,如批量归一化(Batch Normalization)、高分辨率分类器、多尺度训练等。
2024-10-11 19:18:41
1327
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人