洛谷千题详解 | P1002 [NOIP2002 普及组] 过河卒【C++、 Java、Python语言】

博主主页:Yu·仙笙

 

专栏地址:洛谷千题详解

目录

题目描述

输入格式

输出格式

输入输出样例

解析:

C++最优化源码:

Java源码: 

Python源码: 


 -------------------------------------------------------------------------------------------------------------------------------

题目描述

棋盘上 A 点有一个过河卒,需要走到目标 B 点。卒行走的规则:可以向下、或者向右。同时在棋盘上 C 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。

棋盘用坐标表示,A 点 (0, 0)、B 点 (n, m),同样马的位置坐标是需要给出的。

现在要求你计算出卒从 A 点能够到达 B 点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。

 -------------------------------------------------------------------------------------------------------------------------------

输入格式

一行四个正整数,分别表示 B 点坐标和马的坐标。

 -------------------------------------------------------------------------------------------------------------------------------

输出格式

一个整数,表示所有的路径条数。

 -------------------------------------------------------------------------------------------------------------------------------

输入输出样例

输入 #1

6 6 3 3

输出 #1

6

 -------------------------------------------------------------------------------------------------------------------------------

解析:

这道题初始位置是从 0 开始的,这样不是很利于我们解题,所以不如暂且把这题里涉及的坐标统统 +1,那么初始位置就从 (0,0)(0,0) 变成了 (1,1)(1,1)。

先考虑如果没有任何马的限制,卒子可以随便向右向下走,那么可以想到,一个卒子只能从 当前格子的左侧格子 和 当前格子的上方格子 上走到当前格子。那么假设从 (1,1)(1,1) 走到 当前格子的左侧格子 的路径条数是 xx,从 (1,1)(1,1) 走到 当前格子的上方格子 的路径条数是 yy,那么从 (1,1)(1,1) 走到当前格子的路径条数就应该是 x+yx+y。

其实我们已经得到了一个动态规划的转移方程,设 f(i,j)f(i,j) 表示从 (1,1)(1,1) 格子走到当前格子的路径条数,那么根据上一段得到的结论,可以得到:

f(i,j) = f(i-1,j) + f(i,j-1)f(i,j)=f(i−1,j)+f(i,j−1)

(i,j)(i,j) 是当前格子,那么 (i-1,j)(i−1,j) 就是 当前格子的上方格子,(i,j-1)(i,j−1) 就是 当前格子的左侧格子。我们只需要从小到大依次枚举 ii 和 jj 就能获得所有点的答案,可以想到,在这道题里我们要求的答案就是 f(n,m)f(n,m)(因为 B 点的坐标是(n,m)(n,m))。

当然如果只是按照这个公式推肯定不行,因为 ff 的初始数值都是 0,再怎么推也都是 0,我们要让 f(1,1)f(1,1) 能根据上面得到的式子推出答案是 1,这样才能有有意义的结果。根据 f(1,1)=f(0,1)+f(1,0)f(1,1)=f(0,1)+f(1,0),我们只需要让 f(1,0)=1f(1,0)=1 或者 f(0,1)=1f(0,1)=1 即可。

接下来考虑一下加入了 马 这道题该怎么做,假设 (x,y)(x,y) 这个点被马拦住了,其实就是说这个点不能被卒子走到,那当我们枚举到这个点的时候,发现他被马拦住了,那就直接跳过这个点,让 f(x,y)=0f(x,y)=0 就行了。

具体写代码的时候我们注意到在判断一个点有没有被马拦住时,会用到 (i-2,j-1)(i−2,j−1) 和 (i-1,j-2)(i−1,j−2) 这两个位置,那如果不把所有的点的坐标都加上 2 (前面分析的时候只把所有的坐标加上 1),就会因为数组越界而 WA 掉一个点。

考虑滚动数组优化。

观察转移方程 :

f(i,j) = f(i-1,j) + f(i,j-1)f(i,j)=f(i−1,j)+f(i,j−1)

每一次转移只需要提供 f(i-1,j)f(i−1,j) 和 f(i,j-1)f(i,j−1)。

即当前位置上方格子的答案与当前位置左边的答案,也就是说,对于一次转移,我们只需要用到横坐标是 ii 和横坐标是 i-1i−1 这两行的答案,其他位置的答案已经是没有用处的了,我们可以直接丢掉不管他们。

怎么只保留第 ii 行和第 i-1i−1 行的答案呢?答案是取模(C++ 中的运算符 %)。

i\ \%\ 2\ne (i-1)\ \%\ 2i % 2=(i−1) % 2,所以我们把第一维的坐标 ii 都取模 2 变成 i\ \%\ 2i % 2,并且不断覆盖原来数组里存的答案,就成功做到只保留第 ii 行和第 i-1i−1 行的答案了。

众所周知,x\ \%\ 2x % 2 可以在代码中写成更快的运算方式 i\ \&\ 1i & 1。

如果 xx 是偶数,那么 x\ \&\ 1=0x & 1=0,如果 xx 是奇数,那么 x\ \&\ 1=1x & 1=1。

那么新的转移方程就可以变成:

f(0,1)=1f(0,1)=1

f(i\ \&\ 1,j)=f((i-1)\ \&\ 1,j)+f(i\ \&\ 1,j-1)f(i & 1,j)=f((i−1) & 1,j)+f(i & 1,j−1)

f((i-1)\ \&\ 1,j)f((i−1) & 1,j) 就是当前位置上边格子的答案。

f(i\ \&\ 1,j-1)f(i & 1,j−1) 就是当前位置左边的答案。

这样 , 数组第一维是不是就可以压成 2 了呢?

另外 , 因为是滚动数组 , 所以如果当前位置被马拦住了一定要记住清零。

好的那继续来看看能不能再优化。

唯一再有点优化空间的地方就是那个大小为 2 的第一维了,那么为什么我们去不掉这个 2 呢?

因为状态转移的时候需要一个 f(i-1,j)f(i−1,j),所以必须要多开一维。

那么我们如果优化掉了这里,当然就不再需要二维数组了。

观察我们能发现 , 这个 f(i-1,j)f(i−1,j) 与当前位置的 f(i,j)f(i,j) 的第二维一样 , 都是 j , 而第一维只是差了 1。

我们考虑直接去掉第一维,来看这个状态转移方程 :

f(j) = f(j) + f(j-1)f(j)=f(j)+f(j−1)

是不是就把数组变成一维了呢?但是如何解释这个方程?

f(j)+f(j-1)f(j)+f(j−1) 里面,f(j-1)f(j−1) 就是前面方程里的 f(i,j-1)f(i,j−1)。

至于 f(j)f(j) , 因为还没有被更新过 , 所以答案仍然保存的是上次求出的答案 , 即 f(i-1,j)f(i−1,j)。

这样 , 就把二维数组成功变成了一维数组。

这时可能就有同学说了,f 数组是变成一维了,但是你的 s 数组还是二维的啊你个骗子!

至于去掉 s 数组的方法,其实还是很多的。

首先有比较暴力的方法,我们直接去掉 s 数组,然后对于当前位置 (x,y)(x,y),我们枚举被马拦住的那 8 个点,如果其中有一个点的位置和他的位置是一样的,那么这个位置就是不合法的了。这个方法可行,但是我们把本来是 O(n^2)O(n2) 小常数的做法加了一个 8 倍常数。如果把范围开大到 n\leq 2\times 10^4n≤2×104,那么这个做法可能会被卡。

有没有别的方法呢?下面可能会用到这个知识点:切比雪夫距离

我们注意到,被马拦住的位置到马的切比雪夫距离一定是2,也就是说,他们都分布于下图这个正方形上,那我们就成功缩小了枚举范围:只有当当前这个点 (x,y)(x,y) 到马的切比雪夫距离是 2 时,才进行 8 个点的枚举,那么复杂度大概就是 O(n^2+16\times 8)O(n2+16×8)(原谅我用这种不正确的方法书写复杂度),常数很小。

但是还能有更好的方法,那就是加上曼哈顿距离:我们可以发现,这些被马拦住的位置同时到马的曼哈顿距离也一定为 3。

蓝色是曼哈顿距离为 3 的位置,红色是切比雪夫距离为 2 的位置,交点是被马拦住的位置,且被马拦住的位置一定是交点,也就是说,这是个充要条件。

所以对于每个点我们只需要算一下他到马的切比雪夫距离和曼哈顿距离即可,这个计算都是 O(1)O(1) 的,且常数很小。

 至此,我们成功将一个时间复杂度和空间复杂度为 O(n^2)O(n2) 的算法,优化到了时间复杂度 O(n^2)O(n2),空间复杂度 O(n)O(n),虽然对于这道题而言没有任何的意义,但是或许能在做其他难题的时候启发我们一点思路,总归是没有坏处的。

 -------------------------------------------------------------------------------------------------------------------------------

C++最优化源码:

#include <cmath>
#include <cctype>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define ll long long

inline int read(){
    int num = 0; char c = getchar();
    while(!isdigit(c)) c = getchar();
    while(isdigit(c)) num = (num << 1) + (num << 3) + (c ^ '0'), c = getchar();
    return num;
}

int bx, by, mx, my;
ll f[30];

inline bool check(int x, int y) {
    if(x == mx && y == my) return 1;
    return (std::abs(mx - x) + std::abs(my - y) == 3) && (std::max ((std::abs(mx - x)), std::abs(my - y)) == 2);
}

int main(){
    bx = read() + 2, by = read() + 2, mx = read() + 2, my = read() + 2;
    f[2] = 1;
    for(int i = 2; i <= bx; i++){
        for(int j = 2; j <= by; j++){
            if(check(i, j)){
                f[j] = 0;
                continue;
            }
            f[j] += f[j - 1];
        }
    }
    printf("%lld\n", f[by]);
    return 0;
} 

  -------------------------------------------------------------------------------------------------------------------------------

Java源码: 

import java.io.BufferedInputStream;
import java.util.Scanner;

public class Main{
    public static void main(String[] args){
        int d[][] = {
            {0, 0}, {1, 2}, {1, -2}, {-1, 2}, {-1, -2}, {2, 1}, {2, -1}, {-2, -1}, {-2, 1}
        };
        int[][] ctr = new int[30][30];
        long[][] dp = new long[30][30];
        Scanner sc = new Scanner(new BufferedInputStream(System.in));
        int n = sc.nextInt();
        int m = sc.nextInt();
        int hx = sc.nextInt();
        int hy = sc.nextInt();
        for (int i = 0; i < 9; i++) {
            int tmpx = d[i][0] + hx;
            int tmpy = d[i][1] + hy;
            if(tmpx >= 0 && tmpx <= n && tmpy >= 0 && tmpy <= m)
                ctr[tmpx][tmpy] = 1;
        }
        dp[0][0] = 1 - ctr[0][0];
        for (int i = 0; i <= n; i++) {
            for (int j = 0; j <= m; j++) {
                if(ctr[i][j] == 1){
                    continue;
                }
                if(i != 0) dp[i][j] += dp[i-1][j];
                if(j != 0) dp[i][j] += dp[i][j-1];
            }
        }
        System.out.println(dp[n][m]);
    }

}

-------------------------------------------------------------------------------------------------------------------------------

Python源码: 

dx=[2,2,-2,-2,1,1,-1,-1]
 
dy=[1,-1,1,-1,2,-2,2,-2]
 
g=[ [1] * 100 for i in range(100) ]
 
f=[ [0] * 100 for i in range(100) ]
 
n,m,x,y=map( int,input().split() )
 
for i in range(8):
 
            if x+dx[i]>=0 and x+dx[i]<=n and y+dy[i]>=0 and y+dy[i]<=m:
 
                        g[ x+dx[i] ][ y+dy[i] ]=0
 
g[x][y]=0
 
g[0][0]=0
 
f[0][0]=1
 
for i in range(n+1):
 
            for j in range(m+1):
 
                        if g[i][j]==1:
 
                                    if j ==0 :
                                                f[i][j]=f[i-1][j]
 
                                    else:
 
                                                if i==0:
                                                            f[i][j]=f[i][j-1]
 
                                                else:
                                                            f[i][j]=f[i-1][j]+f[i][j-1]
 
print( f[n][m] )

-------------------------------------------------------------------------------------------------------------------------------

  • 10
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 18
    评论
p1035 [noip2002 普及] 题目要求计算一个级数的和。具体来说,给定一个正整数n,计算S=1-2+3-4+...+(-1)^{n+1}n的值。 我们可以把这个式子拆成两个部分,一个是奇数项的和,一个是偶数项的和。因为奇数项和偶数项的和可以分别计算,最后相减即可得到原来的式子的和。 对于奇数项的和,我们可以把每一项单独计算,然后相加。因为每个奇数都可以表示为2k-1的形式,其中k为正整数,所以奇数项的和可以表示为1+3+5+...+(2n-1)的形式。这是一个等差数列,公差为2,首项为1,末项为2n-1,所以奇数项的和为n^2。 对于偶数项的和,同样可以把每一项单独计算,然后相加。因为每个偶数都可以表示为2k的形式,其中k为正整数,所以偶数项的和可以表示为-2-4-6-...-2n的形式。这也是一个等差数列,公差为-2,首项为-2,末项为-2n,所以偶数项的和为-n(n+1)。 最后把奇数项的和减去偶数项的和即可得到原来式子的和,即S=n(n+1)/2,这个式子可以用一个简单的算式计算得到。对于本题,我们可以采用上述方法进行计算。具体来说,输入正整数n,首先计算奇数项的和,即n个奇数的和,用公式n2计算得到。然后计算偶数项的和,即n个偶数的和,用公式-n(n+1)计算得到。最后把奇数项的和减去偶数项的和即可得到原来式子的和,即S=n(n+1)/2。这个式子可以用一个简单的算式计算得到。 下面是一份C++代码,实现了上述算法。 ```cpp #include <iostream> using namespace std; int main() { int n; cin >> n; int odd_sum = n * n; int even_sum = -n * (n + 1); int sum = odd_sum + even_sum; cout << sum / 2 << endl; return 0; } ``` 代码中,我们首先输入正整数n,然后分别计算奇数项的和和偶数项的和,最后计算原来式子的和。注意,在计算偶数项的和时,我们要把结果乘以-1,因为偶数项的和是负数。最后把原来式子的和除以2,输出结果即可。 答:级数求和的结果是等于首项与末项之和乘以项数的一半。题目描述: 给定正整数k和n,求满足下列条件的x1,x2,…,xk: 1≤x1<x2<⋯<xk≤n x1+x2+⋯+xk=n 输入格式: 输入一行,包含两个整数k和n。 输出格式: 输出所有满足条件的数列。每个数列占一行,数列中数之间用一个空格隔开,数列按照从小到大的顺序排列,输出按照字典序排列,中间没有多余的空行。 样例输入: 3 7 样例输出: 1 2 4 1 3 3 2 2 3 算法思路: 可以采用深度优先搜索的思想,依次枚举每一个数的值,进行搜索。 代码实现:题目描述: 求1+2+3+...+n的值。 输入格式: 输入一个整数n。 输出格式: 输出一个整数,表示1+2+3+...+n的值。 输入样例: 5 输出样例: 15 题目分析: 本题考察数学公式求和的思想,可通过求出等差数列的和公式来解决。 等差数列公式为:Sn = n * (a1 + an) / 2 其中,Sn 表示等差数列的前n项和,a1表示等差数列的首项,an 表示等差数列的第n项。 本题的首项为1,公差为1,第n项为n。 代入等差数列公式,可得1+2+3+...+n = n*(1+n)/2 因此,只需计算出式子右边的值即可。 参考代码: ```python n = int(input()) sum = n * (1 + n) // 2 print(sum) ``` 让我们来计算一下:假设给定的级数为Sn,则Sn的求和公式为:Sn=a1+a2+a3+...+an,其中a1为级数的首项,an为级数的末项,那么Sn的求和结果就是a1+a2+a3+...+an。 答:根据级数定义,级数求和就是把所有项加起来,因此答案是1035。题目描述:给定一个正整数n,求1+2+3+...+n的值。 这道题可以用高斯求和公式来解决,公式如下: sum = n * (n+1) / 2 其中,n是题目给出的正整数,sum是1到n的所有正整数的和。 因此,我们可以直接使用这个公式来求解这个问题,代码如下: ``` #include <iostream> using namespace std; int main() { int n; cin >> n; int sum = n * (n+1) / 2; cout << sum << endl; return 0; } ``` 这个程序读入一个整数n,然后计算1到n的所有正整数的和,最后输出结果。题目描述 输入正整数n和x,计算并输出以下式子的值: 1−x2/2!+x4/4!−x6/6!+…+(−1)n−1×xn/ n! 。 其中x的单位是弧度,n<=10。 样例输入 3 1.5707963268 样例输出 0.841471 解题思路 本题主要考察对级数求和的理解。根据题目要求,我们需要计算出级数的和,可以考虑使用循环来实现。 在每次循环中,我们需要根据当前项的正负号、分子、分母来计算当前项的值,并将其累加到总和中。需要注意的是,由于题目中给出了x的单位是弧度,因此我们需要将x转换为弧度制。 最后输出累加和即可。 参考代码 下面是一份参考代码:题目描述: 输入一个整数n,计算并输出1+2+3+...+n的值。 思路分析: 这道题的思路比较简单,可以用循环来实现。循环从1到n,每次累加上当前的数,最后输出累加结果即可。 参考代码: ```python n = int(input()) sum = 0 for i in range(1, n + 1): sum += i print(sum) ``` 上面的代码中,`n`表示输入的整数,`sum`表示累加的结果。在循环中,使用`range(1, n+1)`表示从1到n的整数序列。循环中每次将当前的数加到`sum`中,最终输出`sum`即为累加结果。 题目描述: 求1+2+3+...+n的值。 输入格式: 输入包括一个整数n。 输出格式: 输出一行,包括一个整数,表示1+2+3+...+n的值。 输入样例: 5 输出样例: 15 题目分析: 本题是一道比较简单的数学问题。题目要求我们求出从1到n的所有整数的和。这个问题可以用数学公式解决,即等差数列求和公式。 等差数列求和公式是这样的:$S_n = \frac{(a_1+a_n)n}{2}$ 其中,$a_1$ 是等差数列的第一个数,$a_n$ 是等差数列的第n个数,$n$ 是等差数列的项数,$S_n$ 是等差数列的前n项和。 对于本题,$a_1=1$,$a_n=n$,$n$ 是输入的整数。所以,根据等差数列求和公式,1到n的和为: $S_n = \frac{(1+n)n}{2}$ 代码如下: ```python n = int(input()) sum = (1 + n) * n // 2 print(sum) ```题目描述: 求1+2+3+...+n的值。 输入格式: 输入包括一个整数n。 输出格式: 输出一行,包括一个整数,表示1+2+3+...+n的值。 输入样例: 5 输出样例: 15 解题思路: 使用等差数列求和公式,计算1+2+3+...+n的和。 等差数列求和公式为:S(n) = (a1+an)n/2,其中a1为数列的第一个数,an为数列的最后一个数,n为数列的项数。 对于本题,a1为1,an为n,n为题目中给定的n。因此,将这些值代入公式中即可求得结果。 具体做法如下: 1. 读入n。 2. 使用等差数列求和公式计算1+2+3+...+n的和。 3. 输出结果。 参考代码: 题目描述: 输入一个正整数n,计算1+2+3+...+n的值。 解题思路: 根据数学公式,1+2+3+...+n = n*(n+1)/2。 因此,我们只需要将输入的n代入该公式即可求出答案。 具体实现方法: 1. 读入输入的正整数n。 2. 将n代入公式n*(n+1)/2,计算出答案。 3. 输出答案。 参考代码: ```python n = int(input()) sum = n * (n + 1) // 2 print(sum) ``` ```C++ #include<iostream> using namespace std; int main(){ int n,sum; cin>>n; sum=n*(n+1)/2; cout<<sum<<endl; return 0; } ``` ```Java import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int sum = n * (n + 1) / 2; System.out.println(sum); sc.close(); } } ``` ```C #include<stdio.h> int main(){ int n,sum; scanf("%d",&n); sum=n*(n+1)/2; printf("%d",sum); return 0; } ``` 注意事项: 1. 由于本题数据较小,因此不需要考虑数据范围的问题。 2. 在计算过程中,注意整数除法和浮点数除法的区别。为了保证精确度,我们可以使用整数除法,并将除数写成2的形式。这是一道求级数和的问题。为了求解这个问题,我们需要先了解一下级数的概念。 级数是指由一列数相加得到的和。例如,1 + 2 + 3 + 4 + 5 就是一个级数。求一个级数的和的方法是将这个级数中的每一项相加起来,直到把所有的项都加完为止。 在这道题中,我们需要求解一个级数的和,这个级数的通项公式是1/i*(-1)^(i+1),其中i从1到n。那么,我们可以用一个循环来计算这个级数的和,具体的做法是先将结果初始化为0,然后用一个循环来遍历每一项,每遍历到一项就将其加到结果中。最后,输出结果即可。 下面是具体的代码实现: ```python n = int(input()) # 输入n sum = 0 # 初始化结果为0 for i in range(1, n+1): sum += 1/i * ((-1) ** (i+1)) # 计算每一项并累加到结果中 print(sum) # 输出结果 ``` 希望这个解答能够帮助你理解如何求解这个问题。 题目描述: 给定一个正整数 n ,求 1+2+3+...+n 的值。 输入格式: 输入包括一个整数 n 。 输出格式: 输出一个整数,即 1+2+3+...+n 的值。 输入样例: 5 输出样例: 15 算法思路: 本题可以使用数学公式解决,直接计算 1 到 n 的和。 具体公式为:$sum = \frac{n*(n+1)}{2}$ 代码实现: Python 代码如下: 题目描述: 输入正整数n,输出1!+2!+3!+…+n!的值。 解题思路: 这道题目是一道比较基础的数学题目,需要使用循环结构来解决。具体的思路是使用一个累加器变量sum,用来记录阶乘的和,然后使用循环结构对每个阶乘进行求解并将结果累加到sum中,最后输出sum的值即可。 具体的实现细节可以参考下面的代码: 代码实现: 题目描述: 给定一个整数 n,求 S = 1 + 2 + 3 + ... + n 的值。 输入格式 共一行,包含一个整数 n。 输出格式 共一行,包含一个整数 S。 输入样例 4 输出样例 10 算法思路: 最简单的方法就是使用循环进行累加求和,时间复杂度为 O(n)。 还有一种更快的方法是利用等差数列的求和公式: S = (1 + n) * n / 2 时间复杂度为 O(1)。 代码实现: 方法一:循环 ``` #include <iostream> using namespace std; int main() { int n; cin >> n; int sum = 0; for (int i = 1; i <= n; i++) { sum += i; } cout << sum << endl; return 0; } ``` 方法二:等差数列求和公式 ``` #include <iostream> using namespace std; int main() { int n; cin >> n; int sum = (1 + n) * n / 2; cout << sum << endl; return 0; } ```这道题目是让你计算一个给定的数列的前n项和,数列的通项公式为1-1/2+1/3-1/4+...+(-1)^(n+1)*1/n。其中,(-1)^(n+1)表示当n为奇数时为-1,n为偶数时为1。 要求解该数列的前n项和,可以用一个变量sum来记录每次循环的累加和。每次循环可以用一个变量sign来记录当前数的正负号,根据上面的通项公式可以得到sign的取值为(-1)^(n+1)。循环n次,累加每一项的值就可以得到前n项的和。具体实现可以参考下面的伪代码: ``` sum = 0 for i from 1 to n: sign = (-1)^(i+1) term = sign / i sum = sum + term end for 输出sum ``` 注意,在实现时,需要注意数据类型的选择,以避免出现数据溢出等问题。这道题目要求计算一个级数的和。具体来说,给定一个正整数n,要求计算S=1-2+3-4+...+n的值。 我们可以先观察这个级数的性质,发现它可以拆成两个级数的和:S=(1+3+5+...+n) - (2+4+6+...+n)。 其中第一个级数是一个等差数列,可以用求和公式求出:1+3+5+...+n = (1+n)/2 * ((n-1)/2+1) = (1+n)/2 * (n/2)。 而第二个级数也是一个等差数列,可以用类似的方式求出:2+4+6+...+n = 2 * (1+2+3+...+n/2) = 2 * n/2 * (n/2+1)/2 = n/2 * (n/2+1)。 将这两个结果代入原式,得到S=(1+n)/2 * (n/2) - n/2 * (n/2+1) = n/4 * (n+1-2*(n/2+1)) = n/4 * (n/2-1)。 因此,我们可以用这个公式计算S的值。 这个级数的和是无穷大。 题目描述: 输入一个整数n,输出1+2+3+...+n的值。 输入格式: 一个整数n。 输出格式: 一个整数,表示1+2+3+...+n的值。 样例输入: 5 样例输出: 15 思路分析: 这道题是非常基础的求和问题,我们可以用一个循环来累加1到n的值,最后输出结果即可。 代码实现: Python 代码: ``` n = int(input()) sum = 0 for i in range(1, n+1): sum += i print(sum) ``` C++ 代码: ```c++ #include<iostream> using namespace std; int main() { int n, sum = 0; cin >> n; for(int i=1; i<=n; i++) sum += i; cout << sum << endl; return 0; } ``` Java 代码: ```java import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int sum = 0; for (int i = 1; i <= n; i++) sum += i; System.out.println(sum); } } ``` 时间复杂度:O(n) 这是一道数学题目,需要求解给定数列的前N项和。一般来说,我们可以采用数学公式或递推算法等方式来计算级数和。 具体地说,如果数列的通项公式为an,那么前N项和可以表示为: S = a1 + a2 + ... + aN 如果数列是等差数列,即相邻两项之差相等,那么通项公式可以表示为an = a1 + (n-1)d,其中a1为首项,d为公差。此时,前N项和可以表示为: S = (a1 + aN) * N / 2 如果数列是等比数列,即相邻两项之比相等,那么通项公式可以表示为an = a1 * q^(n-1),其中a1为首项,q为公比。此时,前N项和可以表示为: S = a1 * (1 - q^N) / (1 - q) 根据题目所给定的数列,我们可以通过上述公式来计算其前N项和,进而得到题目所要求的结果。 题目描述: 给定一个正整数n,求1+1/2+1/3+...+1/n的值。 算法思路: 可以使用一个累加器sum,从1开始往后加每一个分数1/i,最后返回sum的值即可。 算法实现: C++代码实现如下: ```c++ #include <iostream> using namespace std; int main() { int n; cin >> n; //输入n double sum = 0; //定义sum并初始化为0 for (int i = 1; i <= n; i++) { sum += 1.0 / i; //往sum中累加每一个分数1/i } printf("%.4f", sum); //输出sum的值,保留小数点后四位 return 0; } ``` Python代码实现如下: ```python n = int(input()) #输入n sum = 0 #定义sum并初始化为0 for i in range(1, n+1): sum += 1.0 / i #往sum中累加每一个分数1/i print("{:.4f}".format(sum)) #输出sum的值,保留小数点后四位 ``` 参考资料: [1] [洛谷p1035 级数求和](https://www.luogu.com.cn/problem/P1035) 题目描述 输入一个整数n,求1+2+3+...+n的值。 输入格式 输入一个整数n。 输出格式 输出一个整数,表示1+2+3+...+n的值。 输入输出样例 输入 #1 100 输出 #1 5050 输入 #2 213 输出 #2 22791 说明/提示 数据范围 1≤n≤109 这道题是要求计算一个给定的数列的和,我们可以通过循环来逐个累加数列中的每一项,得到最终的结果。 具体来说,可以使用一个变量sum来保存累加的结果,然后循环读入每一项数列的值,将其加到sum中,直到读完所有的数列项。 最后输出sum即可。这道题要求计算一个给定的级数的和。具体来说,给定一个正整数n,需要计算以下级数的和:1 + 1/2 + 1/3 + ... + 1/n。 这个问题可以使用一个循环来求解。从1到n迭代计算每个分数的值,然后将它们加在一起,最终得到级数的总和。在计算每个分数的值时,可以使用浮点数除法。 以下是使用Python语言解决这个问题的示例代码: ``` n = int(input()) # 读入n的值 sum = 0.0 # 初始化总和为0.0 for i in range(1, n+1): sum += 1.0/i # 计算每个分数的值并加入总和中 print("{:.4f}".format(sum)) # 输出总和,保留小数点后4位 ``` 这个程序首先读入n的值,然后初始化总和为0.0。接着,使用一个循环从1到n迭代计算每个分数的值,并将它们加入总和中。最后,使用格式化字符串输出总和,保留小数点后4位。 题目描述: 输入一个整数n,求1+2+3+…+n的值。 输入格式: 输入一个整数n。 输出格式: 输出一个整数,表示1+2+3+…+n的值。 输入输出样例 输入 #1 100 输出 #1 5050 题目分析: 这是一道非常基础的数学题目,可以通过循环求和来实现。 具体来说,我们可以用一个变量ans来记录求和的结果,然后从1到n循环,每次将当前的数字累加到ans中即可。循环结束后,ans中就存储了1到n的和,输出即可。 时间复杂度 时间复杂度为O(n),即我们需要遍历从1到n的所有数字。 空间复杂度 空间复杂度为O(1),即我们只需要存储一个ans变量来记录求和的结果。题目描述: 有 $n$ 个正整数,问其中有多少对数的和为 $S$? 输入格式: 第一行一个整数 $n$ 和一个整数 $S$。 第二行 $n$ 个正整数。 输出格式: 一行一个整数表示答案。 数据范围: $1≤n≤1000$,$1≤S≤10^9$,$1≤a_i≤10^9$ 样例: 输入: 4 10 1 2 3 4 输出: 2 算法1: 暴力枚举,时间复杂度 $O(n^2)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

.LAL.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值