85. Maximal Rectangle

题目:

Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing only 1's and return its area.

For example, given the following matrix:

1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0

Return 6.

解法1 动态规划:

最大面积= max((right(i, j) - left(i, j)) * height(i, j) )
其中height(i, j) 是以m(i, j)为起点的高。
right(i, j)是以height(i, j)为高的右边界,同理left(i, j)。
TIPS:确定 合适 的dp[i][j]非常重要。

class Solution {
public:
    int maximalRectangle(vector<vector<char>>& matrix) {
        if (<span style="color:#ff0000;">matrix.empty()</span>) return 0;//注意输入是否为空
        const int m = matrix.size() + 1;
	    const int n = matrix[0].size() ;
	    vector<vector<int>> left(m, vector<int>(n, 0));
	    vector<vector<int>> right(m, vector<int>(n, n));
	    vector<vector<int>> height(m, vector<int>(n, 0));
	    int ans = 0;
	    for(int i = 1; i < m; i++)
	    {
	        int cur_left = 0, cur_right = n;
	        for(int j = n - 1; j >= 0; j--)//注意j的初始值
	        {
	            if(matrix[i - 1][j] == '0')
	            {
	                height[i][j] = 0;
	                cur_right =  j;
	            }
	            else
	            {
	                height[i][j] = height[i - 1][j] + 1;
	                right[i][j] = min(right[i - 1][j], cur_right);
	            }
	        }
	        for(int j = 0; j < n; j++)
	        {
	            if(matrix[i - 1][j] == '0')
	                cur_left = j + 1;//注意要加一
	            else
	                left[i][j] = max(left[i - 1][j], cur_left);
	            ans = max(ans, (right[i][j] - left[i][j]) * height[i][j]);
	        }
	    }
	    return ans;
    }
};
空间复杂度o(m * n), 时间复杂度 o(m * n) ; 我们知道dp问题可以降维,下面是空间复杂度o(n)的代码
int maximalRectangle(vector<vector<char>>& matrix) {
	if (matrix.empty()) return 0;
	const int m = matrix.size();
	const int n = matrix[0].size();
	/*int left[n] = {0}, right[n], height[n];
	fill_n(left, n, 0); fill_n(right, n, n); fill_n(height, n, 0);*/
	vector<int> left(n, 0), right(n, n), height(n, 0);
	int maxA = 0;
	for (int i = 0; i<m; i++) {
		int cur_left = 0, cur_right = n;
		for (int j = 0; j<n; j++) { // compute height (can do this from either side)
			if (matrix[i][j] == '1') height[j]++;
			else height[j] = 0;
		}
		for (int j = 0; j<n; j++) { // compute left (from left to right)
			if (matrix[i][j] == '1') left[j] = max(left[j], cur_left);
			else { left[j] = 0; cur_left = j + 1; }
		}
		// compute right (from right to left)
		for (int j = n - 1; j >= 0; j--) {
			if (matrix[i][j] == '1') right[j] = min(right[j], cur_right);
			else { right[j] = n; cur_right = j; }
		}
		// compute the area of rectangle (can do this from either side)
		for (int j = 0; j<n; j++)
			maxA = max(maxA, (right[j] - left[j])*height[j]);
		for (int j = 0; j < n; j++)
		{
			cout << left[j] << " ";
			if (j == n - 1)cout << endl;
		}
		for (int j = 0; j < n; j++)
		{
			cout << right[j] << " ";
			if (j == n - 1)cout << endl;
		}
		cout << endl;
	}
	return maxA;
}

解法2:栈+动态规划

待续



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值