4. Median of Two Sorted Arrays 典型的二分,分治算法, 另 第k小的O(lgk)解法

There are two sorted arrays nums1 and nums2 of size m and n respectively.

Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

Example 1:

nums1 = [1, 3]
nums2 = [2]

The median is 2.0

Example 2:

nums1 = [1, 2]
nums2 = [3, 4]

The median is (2 + 3)/2 = 2.5

解法一:

To solve this problem, we need to understand "What is the use of median". In statistics, the median is used for dividing a set into two equal length subsets, that one subset is always greater than the other. If we understand the use of median for dividing, we are very close to the answer.

First let's cut A into two parts at a random position i:

      left_A             |        right_A
A[0], A[1], ..., A[i-1]  |  A[i], A[i+1], ..., A[m-1]

Since A has m elements, so there are m+1 kinds of cutting( i = 0 ~ m ). And we know: len(left_A) = i, len(right_A) = m - i . Note: when i = 0 , left_A is empty, and when i = m , right_A is empty.

With the same way, cut B into two parts at a random position j:

      left_B             |        right_B
B[0], B[1], ..., B[j-1]  |  B[j], B[j+1], ..., B[n-1]

Put left_A and left_B into one set, and put right_A and right_B into another set. Let's name them left_part and right_part :

      left_part          |        right_part
A[0], A[1], ..., A[i-1]  |  A[i], A[i+1], ..., A[m-1]
B[0], B[1], ..., B[j-1]  |  B[j], B[j+1], ..., B[n-1]

If we can ensure:

1) len(left_part) == len(right_part)
2) max(left_part) <= min(right_part)

then we divide all elements in {A, B} into two parts with equal length, and one part is always greater than the other. Then median = (max(left_part) + min(right_part))/2

double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        int m = nums1.size(), n = nums2.size();
        if(n < m) return findMedianSortedArrays(nums2, nums1);
        int i, j, imin = 0, imax = m;
        while(imin <= imax){// 注意 是小于或等于
            i = (imin + imax) / 2;
            j = (m + n + 1) / 2 - i;
            if(j < n && i > 0 && nums1[i - 1] > nums2[j]) imax = i - 1;// 注意 +1 -1 二分法
            else if(j > 0 && i < m && nums2[j - 1] > nums1[i]) imin = i + 1;
            else break;
        }
        int R1;
        if(i == 0) R1 = nums2[j - 1];// 对于这种边界的一定要加以判断
        else if(j == 0) R1 = nums1[i - 1];
        else R1 = max(nums1[i - 1], nums2[j - 1]);
        
        if((n + m) % 2) return R1;// 注意 如果m + n 是奇数的话 只用R1即可。
        
        int R2;
        if(i == m) R2 = nums2[j];
        else if(j == n) R2 = nums1[i];
        else R2 = min(nums1[i], nums2[j]);
        return (R1 + R2) / 2.0;
    }

方法2:

We have two arrays:

nums1[0], nums1[1]....nums1[m - 1];

nums2[0], nums2[2]....nums2[n - 1];

the result after merging:

num[0],num[1],num[2]...num[m + n - 1];

Let‘s compare nums1[k / 2 - 1] and nums2[k / 2 - 1]

if nums1[k / 2 - 1] < nums2 [k / 2 - 1]

then the nums1[k / 2 - 1] and it's left side elements must smaller than kth number in num arrary(num[k - 1]).

class Solution {
public:
    int kth(int a[], int m, int b[], int n, int k) {
        if (m < n) return kth(b,n,a,m,k);
        if (n==0) return a[k-1];
        if (k==1) return min(a[0],b[0]);

        int j = min(n,k/2);
        int i = k-j;
        if (a[i-1] > b[j-1]) return kth(a,i,b+j,n-j,k-j);
        return kth(a+i,m-i,b,j,k-i);
    }

    double findMedianSortedArrays(int a[], int m, int b[], int n) {
        int k = (m+n)/2;
        int m1 = kth(a,m,b,n,k+1);
        if ((m+n)%2==0) {
            int m2 = kth(a,m,b,n,k);
            return ((double)m1+m2)/2.0;
        }
        return m1;
    }
};

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值