# -*- coding:utf-8 -*- import sys import re import numpy as np from sklearn.externals import joblib import csv import matplotlib.pyplot as plt import os from sklearn.feature_extraction.text import CountVectorizer from sklearn import cross_validation import os from sklearn.naive_bayes import GaussianNB from sklearn.cluster import KMeans from sklearn.manifold import TSNE #处理域名的最小长度 MIN_LEN=10 #随机程度 random_state = 170 def load_alexa(filename): domain_list=[] csv_reader = csv.reader(open(filename)) for row in csv_reader: domain=row[1] if domain >= MIN_LEN: domain_list.append(domain) return domain_list def load_dga(filename): domain_list=[] #xsxqeadsbgvpdke.co.uk,Domain used by Cryptolocker - Flashback DGA for 13 Apr 2017,2017-04-13, # http://osint.bambenekconsulting.com/manual/cl.txt with open(filename) as f: for line in f: domain=line.split(",")[0] if domain >= MIN_LEN: domain_list.append(domain) return domain_list def nb_dga(): x1_domain_list = load_alexa("../data/top-1000.csv") x2_domain_list = load_dga("../data/dga-cryptolocke-1000.txt") x3_domain_list = load_dga("../data/dga-post-tovar-goz-1000.txt") x_domain_list=np.concatenate((x1_domain_list, x2_domain_list,x3_domain_list)) y1=[0]*len(x1_domain_list) y2=[1]*len(x2_domain_list) y3=[2]*len(x3_domain_list) y=np.concatenate((y1, y2,y3)) print x_domain_list cv = CountVectorizer(ngram_range=(2, 2), decode_error="ignore", token_pattern=r"\w", min_df=1) x= cv.fit_transform(x_domain_list).toarray() clf = GaussianNB() print cross_validation.cross_val_score(clf, x, y, n_jobs=-1, cv=3) def kmeans_dga(): x1_domain_list = load_alexa("../data/dga/top-100.csv") x2_domain_list = load_dga("../data/dga/dga-cryptolocke-50.txt") x3_domain_list = load_dga("../data/dga/dga-post-tovar-goz-50.txt") x_domain_list=np.concatenate((x1_domain_list, x2_domain_list,x3_domain_list)) #x_domain_list = np.concatenate((x1_domain_list, x2_domain_list)) y1=[0]*len(x1_domain_list) y2=[1]*len(x2_domain_list) y3=[1]*len(x3_domain_list) y=np.concatenate((y1, y2,y3)) #y = np.concatenate((y1, y2)) #print x_domain_list cv = CountVectorizer(ngram_range=(2, 2), decode_error="ignore", token_pattern=r"\w", min_df=1) x= cv.fit_transform(x_domain_list).toarray() model=KMeans(n_clusters=2, random_state=random_state) y_pred = model.fit_predict(x) #print y_pred tsne = TSNE(learning_rate=100) x=tsne.fit_transform(x) print x print x_domain_list for i,label in enumerate(x): #print label x1,x2=x[i] if y_pred[i] == 1: plt.scatter(x1,x2,marker='o') else: plt.scatter(x1, x2,marker='x') #plt.annotate(label,xy=(x1,x2),xytext=(x1,x2)) plt.show() if __name__ == '__main__': #nb_dga() kmeans_dga()