快手可灵文生视频大模型

快手近日推出了新的视频生成模型,可灵 Kling AI,根据官方放出的 Demo,几乎可以和 OpenAi 的 SORA 相媲美。

3547627435575c942c798a5781048d8f.png

官网地址:https://kling.kuaishou.com/

可灵AI的功能特点

得益于高效的训练基础设施、极致的推理优化和可扩展的基础架构,可灵大模型能够生成长达2分钟的视频,且帧率达到30fps。

采用3D时空联合注意力机制,能够更好地建模复杂时空运动,生成较大幅度运动的视频内容,同时能够符合运动规律。

基于自研模型架构及Scaling Law激发出的强大建模能力,可灵能够模拟真实世界的物理特性,生成符合物理规律的视频。

基于对文本-视频语义的深刻理解和 Diffusion Transformer 架构的强大能力,可灵能够将用户丰富的想象力转化为具体的画面,虚构真实世界中不会出现的的场景。

基于自研3D VAE,可灵能够生成1080p分辨率的电影级视频,无论是浩瀚壮阔的宏大场景,还是细腻入微的特写镜头,都能够生动呈现。

采用了可变分辨率的训练策略,在推理过程中可以做到同样的内容输出多种多样的视频宽高比,满足更丰富场景中的视频素材使用需求。

2a05dfe9c0ad995da9cbe22683b75080.png

如何申请试用?

目前,由于算力原因,试用需要申请

第一步:应用商店搜索快影,或者扫描下面的二维码下载app,进入快影 --> AI玩法 --> AI生视频 --> 填写问卷

daabd497df0865cb510cbe46c52204b5.png

第二步:填写表格:https://survey.corp.kuaishou.com/view/91uw0qu7

等待官方核实通过即可体验可灵AI了。

最后,看个官方的视频演示,兵马俑跳最炫民族风。

对AI+自媒体感兴趣的朋友,可以加我微信,一起学习,一起变现。

fffaf4dfc17f36f06ddc49bedb3b2613.jpeg

### 大规模视频成模型概述 大规模视频成模型旨在创建高质量、连贯且具有真实感的动态图像序列。这类模型通常依赖于强大的计算资源和复杂的架构设计,以捕捉时间维度上的复杂模式并成逼真的视觉内容。 #### 序列建模促进大视图模型的学习能力 通过引入顺序处理机制,可以显著提升大型视觉模型(LVM)的学习效率和效果[^1]。具体而言,在训练过程中采用自回归方法或其他形式的时间依赖结构能够帮助网络更好地理解和预测连续帧之间的关系。这不仅提高了最终输出的质量,还使得更高效的参数更新成为可能,从而支持更大规模的数据集上进行有效的学习过程优化。 #### Sora:一种先进的视频成框架 Sora是由OpenAI推出的一款基于Transformer架构构建的强大工具,它能够在给定提示条件下合成高度真实的短视频片段[^2]。此系统利用了大量的预训练权重以及专门针对时空特征提取而调整过的组件,实现了前所未有的创造力表达水平。其核心优势在于: - **多尺度表示**:可以从不同抽象层次捕获场景细节; - **条件控制**:允许用户指定特定属性或风格指导成过程; - **高效推理引擎**:即使面对高分辨率输入也能保持实时性能表现。 #### 综合评价体系的重要性 尽管当前技术已经在很多方面取得了突破性的进展,但对于如何科学公正地衡量这些成果却始终缺乏统一标准[^3]。因此建立一套全面覆盖各个方面的评测方案显得尤为重要——既包括定量分析也涉及主观体验层面考量;既能反映现有技术水平又能对未来研究方向给出建设性意见。 ```python import torch from transformers import AutoModelForVideoGeneration, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("openai/sora") model = AutoModelForVideoGeneration.from_pretrained("openai/sora") prompt = "A cat playing with a ball" input_ids = tokenizer(prompt, return_tensors="pt").input_ids video_frames = model.generate(input_ids) for frame in video_frames: display(frame) ``` 上述代码展示了使用预训练好的Sora模型根据文本描述成相应视频片段的过程。这里采用了Hugging Face提供的接口简化了调用流程,并能快速获得直观的结果展示。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迷途小书童的Note

请博主喝矿泉书!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值