神经网络与深度学习课程总结 (1)

一、线性回归

1.1 定义和学习过程

        利用数理统计中回归分析,来确定两种或两种以上变量间相 互依赖的定量关系的一种统计分析方法,学习过程如下图:

1.2 线性二分问题

          线性分类器则透过特征的线性组合来做出分类决定,以达到此种目的。线性分类器输入:特征向量输出:哪一类。如果是二分类问题,则为0和1,或者是属于某类的概率,即0-1之间的数。

        线性分类与线性回归差别输出意义不同:属于某类的概率回归具体值参数意义不同:最佳分类直线最佳拟合直线维度不同:前面的例子中,一个是一维的回归,一个是二维的分类。

        我们需要最终概率结果在0-1之间,因此需要对值做一个变换:

       进而构造代价函数求解其最小值,继而使用梯度下降法求解$\min J(\theta )$

二、多层前馈神经网络(BP网络)

2.1 XOR 问题与多层感知机(MLP)

XOR 是线性不可分问题:
  • 单层感知机无法拟合 XOR。
  • 需要引入隐藏层构建三层网络(输入层-隐藏层-输出层):

常用的激活函数为:

2.2 MLP 逼近能力

  • 定理 1:三层感知器可逼近任何二值逻辑函数
  • 定理 2:使用 S 型激活函数(如 Sigmoid、Tanh),可以逼近任何连续函数

三、BP 算法(误差反向传播)

3.1 过程分为两步:

正向传播(Forward):

输入 → 隐层 → 输出,计算预测结果\widehat{y}

反向传播(Backward):

计算损失函数,使用梯度下降法更新参数。

3.2 常用损失函数

均方误差(MSE): 

3.3 权值更新公式(链式法则): 

输出层:

隐含层:

更新权重:

 四、卷积神经网络

4.1 核心组件

卷积层(Convolution):

池化层(Pooling):

4.2 CNN反向传播简要公式

卷积层的梯度:

池化层误差传递:
  • 最大池化:误差传递给最大值所在位置;
  • 平均池化:误差均分传递

五、本周重点知识点总结

  • MLP 可解决非线性问题,需借助 BP 算法学习参数;
  • CNN 可用于图像处理,依靠局部连接、共享权重、池化降低复杂度;
  • PyTorch 框架学习实践基础,掌握张量与计算图使用;
  • 常用数据集的特点与应用场景需了解,支持实验与研究。
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值