一、线性回归
1.1 定义和学习过程
利用数理统计中回归分析,来确定两种或两种以上变量间相 互依赖的定量关系的一种统计分析方法,学习过程如下图:
1.2 线性二分问题
线性分类器则透过特征的线性组合来做出分类决定,以达到此种目的。线性分类器输入:特征向量输出:哪一类。如果是二分类问题,则为0和1,或者是属于某类的概率,即0-1之间的数。
线性分类与线性回归差别:输出意义不同:属于某类的概率回归具体值参数意义不同:最佳分类直线最佳拟合直线维度不同:前面的例子中,一个是一维的回归,一个是二维的分类。
我们需要最终概率结果在0-1之间,因此需要对值做一个变换:
进而构造代价函数求解其最小值,继而使用梯度下降法求解。
二、多层前馈神经网络(BP网络)
2.1 XOR 问题与多层感知机(MLP)
XOR 是线性不可分问题:
- 单层感知机无法拟合 XOR。
- 需要引入隐藏层构建三层网络(输入层-隐藏层-输出层):
常用的激活函数为:
2.2 MLP 逼近能力
- 定理 1:三层感知器可逼近任何二值逻辑函数;
- 定理 2:使用 S 型激活函数(如 Sigmoid、Tanh),可以逼近任何连续函数。
三、BP 算法(误差反向传播)
3.1 过程分为两步:
正向传播(Forward):
输入 → 隐层 → 输出,计算预测结果。
反向传播(Backward):
计算损失函数,使用梯度下降法更新参数。
3.2 常用损失函数
均方误差(MSE):
3.3 权值更新公式(链式法则):
输出层:
隐含层:
更新权重:
四、卷积神经网络
4.1 核心组件
卷积层(Convolution):
池化层(Pooling):
4.2 CNN反向传播简要公式
卷积层的梯度:
池化层误差传递:
- 最大池化:误差传递给最大值所在位置;
- 平均池化:误差均分传递
五、本周重点知识点总结
- MLP 可解决非线性问题,需借助 BP 算法学习参数;
- CNN 可用于图像处理,依靠局部连接、共享权重、池化降低复杂度;
- PyTorch 框架学习实践基础,掌握张量与计算图使用;
- 常用数据集的特点与应用场景需了解,支持实验与研究。