CF1725E
题目链接
题目解法
因为
g
g
g 为质因子个数,所以考虑对于每个质因子分开考虑
然后把包含质因子
p
p
p 的点建出虚树
然后答案就是要求
∑
f
(
x
,
y
,
z
)
=
∑
1
3
(
d
(
x
,
y
)
+
d
(
x
,
z
)
+
d
(
y
,
z
)
)
=
n
−
2
2
∑
d
(
x
,
y
)
\sum f(x,y,z)=\sum\frac{1}{3}{(d(x,y)+d(x,z)+d(y,z))}=\frac{n-2}{2}\sum d(x,y)
∑f(x,y,z)=∑31(d(x,y)+d(x,z)+d(y,z))=2n−2∑d(x,y)
直接树形
d
p
dp
dp 考虑每条边的贡献即可
时间复杂度
O
(
n
ω
a
l
o
g
n
)
O(n\omega_alogn)
O(nωalogn)
#include <bits/stdc++.h>
using namespace std;
const int N=200100;
const int P=998244353,iv2=499122177;
typedef pair<int,int> pii;
int n,val[N];
int depth[N],up[N][20],dfn[N],dfs_clock;
int e[N<<1],ne[N<<1],h[N],idx;
int pr[N],v[N],cnt;
bool tag[N];
vector<int> inc[N];
vector<pii> T[N];
inline int read(){
int FF=0,RR=1;
char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') RR=-1;
for(;isdigit(ch);ch=getchar()) FF=(FF<<1)+(FF<<3)+ch-48;
return FF*RR;
}
void sieve(int n){
for(int i=2;i<=n;i++){
if(!v[i]) v[i]=i,pr[++cnt]=i;
for(int j=1;j<=cnt&&pr[j]<=n/i;j++){
v[pr[j]*i]=pr[j];
if(v[i]==pr[j]) break;
}
}
}
int get_lca(int x,int y){
if(depth[x]>depth[y]) swap(x,y);
for(int i=18;i>=0;i--) if(depth[up[y][i]]>=depth[x]) y=up[y][i];
if(x==y) return x;
for(int i=18;i>=0;i--) if(up[x][i]!=up[y][i]) x=up[x][i],y=up[y][i];
return up[x][0];
}
int get_dist(int x,int y){ return depth[x]+depth[y]-2*depth[get_lca(x,y)];}
int siz[N],res,tot;
void calc(int u){
siz[u]=tag[u];
for(auto [v,w]:T[u]){
calc(v);
// cout<<siz[v]<<' '<<w<<'\n';
res=(res+1ll*w*siz[v]%P*(tot-siz[v]))%P,siz[u]+=siz[v];
}
}
int virtual_tree(vector<int> nodes){
if(nodes.empty()) return 0;
tot=nodes.size();
for(int u:nodes) tag[u]=1;
sort(nodes.begin(),nodes.end(),[](const int &x,const int &y){ return dfn[x]<dfn[y];});
int len=nodes.size();
for(int i=0;i<len-1;i++) nodes.push_back(get_lca(nodes[i],nodes[i+1]));
sort(nodes.begin(),nodes.end(),[](const int &x,const int &y){ return dfn[x]<dfn[y];});
nodes.erase(unique(nodes.begin(),nodes.end()),nodes.end());
int rt=nodes[0];
for(int i=1;i<nodes.size();i++){
int lca=get_lca(nodes[i],nodes[i-1]),dis=get_dist(nodes[i],lca);
T[lca].push_back({nodes[i],dis});
}
res=0;calc(rt);
res=1ll*res*(tot-2)%P*iv2%P;
// cout<<res<<'\n';
for(int u:nodes) T[u].clear(),tag[u]=0;
return res;
}
void dfs(int u,int fa){
dfn[u]=++dfs_clock,depth[u]=depth[fa]+1,up[u][0]=fa;
for(int i=h[u];~i;i=ne[i]){
int v=e[i];if(v==fa) continue;
dfs(v,u);
}
}
void add(int x,int y){ e[idx]=y,ne[idx]=h[x],h[x]=idx++;}
int main(){
sieve(200000);
n=read();
for(int i=1;i<=n;i++) val[i]=read();
memset(h,-1,sizeof(h));
for(int i=1;i<n;i++){
int x=read(),y=read();
add(x,y),add(y,x);
}
dfs(1,0);
for(int j=1;j<=18;j++) for(int i=1;i<=n;i++) up[i][j]=up[up[i][j-1]][j-1];
for(int i=1;i<=n;i++){
int t=val[i];
while(t>1){
inc[v[t]].push_back(i);
int x=v[t];
while(t%x==0) t/=x;
}
}
int ans=0;
for(int i=1;i<=2e5;i++) ans=(ans+virtual_tree(inc[i]))%P;
printf("%d\n",ans);
fprintf(stderr,"%d ms\n",int(1e3*clock()/CLOCKS_PER_SEC));
return 0;
}
CF906D
题目链接
题目解法
考虑很多指数级的东西,考虑欧拉定理,因为一个数的若干次方
%
p
\%p
%p 的值最多只会关注前
l
o
g
log
log 个指数,因为考虑拓展欧拉定理:
a
x
≡
a
x
%
ϕ
(
p
)
+
ϕ
(
p
)
(
m
o
d
p
)
a^x\equiv a^{x\%\phi(p)+\phi(p)}(\mod p)
ax≡ax%ϕ(p)+ϕ(p)(modp),而
p
→
p
h
i
(
p
)
p\to phi(p)
p→phi(p) 只会衰减
O
(
l
o
g
)
O(log)
O(log) 次就会变成
1
1
1
然后预处理出每个可能用到的
p
h
i
phi
phi,对于询问暴力做时间复杂度就是对的
时间复杂度为
O
(
q
l
o
g
n
)
O(qlogn)
O(qlogn)
要注意到快速幂的时候如果
x
y
≥
P
xy\ge P
xy≥P,要把变成
x
y
%
P
+
P
xy\%P+P
xy%P+P,以满足拓展欧拉定理
#include <bits/stdc++.h>
using namespace std;
const int N=100100;
int n,P,l,r,w[N];
map<int,int> mp;
inline int read(){
int FF=0,RR=1;
char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') RR=-1;
for(;isdigit(ch);ch=getchar()) FF=(FF<<1)+(FF<<3)+ch-48;
return FF*RR;
}
int getpw(int a,int b,int Mod){
int res=1;
for(;b;b>>=1){
if(b&1){
if(1ll*res*a>=Mod) res=1ll*res*a%Mod+Mod;
else res*=a;
}
if(1ll*a*a>=Mod) a=1ll*a*a%Mod+Mod;
else a*=a;
}
return res;
}
int ask(int pos,int Mod){
if(pos>r||Mod==1) return 1;
int mi=ask(pos+1,mp[Mod]);
return getpw(w[pos],mi,Mod);
}
void solvephi(int x){
if(x==1) return;
int phi=x,t=x;
for(int i=2;i*i<=x;i++)
if(x%i==0){
while(x%i==0) x/=i;
phi=phi/i*(i-1);
}
if(x>1) phi=phi/x*(x-1);
mp[t]=phi,solvephi(phi);
}
int main(){
n=read(),P=read();
solvephi(P);
for(int i=1;i<=n;i++) w[i]=read();
int q=read();
while(q--){
l=read(),r=read();
printf("%d\n",ask(l,P)%P);
}
fprintf(stderr,"%d ms\n",int(1e3*clock()/CLOCKS_PER_SEC));
return 0;
}