混凝土数学第四章之数论学习笔记

我总觉得混凝土数学内容的层次性不足, 因此从这篇学习笔记开始, 我会把分段分得更细致一些.

整除性

这是整除的定义:
\[ m | n \Rightarrow m > 0且对于某个整数k有n = mk \]
接下来我们还定义了最大公因子:
\[ \gcd(m, n) = \max\{ k \ | \ k | m且k | n \} \]
以及最小公倍数
\[ lcm(m, n) = \min\{ k \ | \ k > 0且m | k且n | k\} \]

欧几里得算法

考虑如何计算\(\gcd(n, m)\): 我们一般用欧几里德辗转相除法. 这种算法我们都很熟悉, 因此对于做法我们不再赘述.

考虑如何证明欧几里德算法的正确性: 我们不妨假设\(n \ge m\).

(1) \(m = 0\), 则\(\gcd(n, m) = \gcd(n, 0) = n\).

(2) \(m > 0\), 不妨设\(\gcd(n, m) = d\), 则\(n = n'd\), \(m = m'd\), 且\(\gcd(n', m') = 1\). 我们考虑辗转相除的本质实际上是辗转相减, 因此我们实际上要证明的是\(\gcd(n, m) = \gcd(m, n - m)\). 我们有
\[ \begin{aligned} \gcd(m, n - m) &= \gcd(m'd, n'd - m'd) \\ &= \gcd(m'd, (n' - m')d) \end{aligned} \]
显然, 现在问题变成了证明\(\gcd(m', n' - m') = 1\).

反证法, 我们假设存在\(d' > 1\)满足\(d' | m'\)\(d' | n' - m'\), 则\(d' | n' - m' + m'\), 即\(d' | n'\), 因此与条件矛盾.

扩展欧几里得算法

我们注意到\(n \bmod m\)的本质: \(n \\bmod m = n - m\lfloor \frac nm \rfloor\)
考虑对欧几里得算法加以推广, 用于计算满足
\[ mm' + nn' = \gcd(m, n) \]
的整数\(m'\), \(n'\). 做法如下: 假如\(m = 0\), 则取\(m' = 0\), \(n' = 1\), 否则我们令\(r = n \\bmod m = n - m\lfloor \frac nm \rfloor\), 递归计算
\[ rr'' + mm'' = \gcd(r, m)\\ \]
中满足条件的\(r''\), \(m''\)
又因为有
\[ (n - m\lfloor \frac nm \rfloor)r'' + mm'' = \gcd(r, m) = \gcd(m, n) \\ nr'' + m(m'' - m \lfloor \frac nm \rfloor) = \gcd(m, n) \]
因而
\[ \begin{cases} n' = r'' \\ m' = m'' - m \lfloor nm \rfloor \end{cases} \]
依据这种方法, 我们总是能找到合法的一组解.

另外的一个小定理

\[ k | m且k | n \Leftrightarrow k | \gcd(m, n) \]

至于证明:
\[ \because k | m且k | n \\ \therefore k | mm' + nn' \\ \]
又根据上面的扩展欧几里德定理, 我们有
\[ mm' + nn' = \gcd(m, n) \\ k | \gcd(m, n) \]

整除意义下的和式处理技巧

\[ \sum_{m | n} a_m = \sum_{m | n} a_{n / m}, \ n > 0 \]

这种变换的正确性在于同样都是取遍了\(n\)的每个约数.
同时还有另一种表达方式:
\[ \sum_{m | n} a_m = \sum_k \sum_{m > 0} a_m [n = mk] \]
我们再看二重和式中的情况:
\[ \sum_{m | n} \sum_{k | m} a_{k, m} = \sum_{k | n} \sum_{l | (n / k)} a_{k, kl} \]
考虑如何证明:
等式的左边是:
\[ \sum_{j, l, k, m} a_{k, m} [n = jm][m = kl] = \sum_{j, l, k} a_{k, kl} [jkl = n] \]
等式的右边:
\[ \sum_{i, j, k, l} a_{k, kl} [n = ik] [lj = n / k] = \sum_{i, j, k, l} a_{k, kl} [jkl = n] \]
左边等于右边, 证毕.

素数

按照惯例, \(1\)既不是素数, 又不是合数. 假如一个正整数不等于\(1\)且恰好只有\(1\)\(p\)两个因子, 那么就把这个数称为素数, 否则为合数.

算数基本定理

任何正整数\(n\)都可以表示成素数的乘积:
\[ n = p_1 ... p_m = \prod_{k = 1}^m p_k, \ p1 \le ... \le p_m \]
并且对于每个合数, 以上这种站开方式是唯一的, 仅有一种方式将\(n\)按照素数非减的次序写成素数的乘积. 这个定理称为算术基本定理.
考虑如何证明这一定理:
我们令
\[ n = p_1 ... p_m = q_1 ... q_k, \ p_1 \le ... \le p_m且q_1 \le ... \le q_k \]
运用数学归纳法, 对于\(n = 1\)的情况, 命题显然就是成立的; 考虑\(n \ge 2\)的情况, 我们只需要证明\(p_1 = q_1\), 然后再递归证明\(p_2 = q_2\)即可.
使用反证法. 假设我们能找到这样的一组\(p_1 \ne q_1\), 由于\(p_1\)\(q_1\)都是质数, 因此根据扩展欧几里得算法, 我们可以找到一组
\[ ap_1 + bq_1 = 1 \]
这样就有了
\[ ap_1q_2 ... q_k + bq_1q_2 ... q_k = q_2 ... q_k \\ \]
注意到\(p_1 | n = q_1 ... q_k\), 等式左边被\(p_1\)整除, 因此等式右边也被\(p_1\)整除. 我们又有\(q_2 ... q_k < n\), 根据数学归纳法, \(X = q_2 ... q_k\)只有唯一分解, 因此\(p_1\)只能是\(q_1\)的因数, 这与\(p_1 < q_1\)\(q_1\)为质数矛盾. 因此假设不成立, 命题得证.
我们更倾向于把算术基本定理表述为另一种形式:
\[ n = \prod_p p^{n_p}, \ n_p \ge 0 \]
右边是无穷多个素数的乘积.
另外的就是数系的定义: 我们把序列\(\langle n_2, n_3, n_5, ... \rangle\)看作是正整数的数系, 比如说\(12\)的素指数表示是\(\langle2, 1, 0, 0, ...\rangle\), 而\(18\)的素指数表示就是\(\langle 2, 1, 0, 0, ...\rangle\). 两个数相乘, 直接把其素指数表示相加即可.

同余关系

\[ a \equiv b \Leftrightarrow m | a - b \pmod m \]

对于同余, 我们有以下性质:
\[ a \equiv b 且 c \equiv d \Rightarrow a + c \equiv b + d \pmod m \\ a \equiv b 且 c \equiv d \Rightarrow a - c \equiv b - d \pmod m \\ a \equiv b 且 c \equiv d \Rightarrow ac \equiv bd \pmod m \\ a \equiv b \Rightarrow a^n \equiv b^n \pmod m , n \ge 0 \\ ad \equiv bd \Leftrightarrow a \equiv b \pmod m, d \perp m \\ ad \equiv bd \pmod {md} \Leftrightarrow a \equiv b \pmod m \]
中国剩余定理:
\[ a \equiv b \pmod{mn} \Leftrightarrow a \equiv b \pmod m 且 a \equiv b \pmod n, m \perp n \]

独立剩余

我们将一个整数\(x\)表示为一组互素的模的剩余序列:
\[ Res(x) = (x \bmod m_1, \cdots, x \bmod m_r), \forall j \ne k有m_j \perp m_k \]
则我们另\(m = \prod_{k = 1}^r m_r\), 我们可以确定\(x \bmod m\).

比如说, 我们观察\(0\)\(14\)每个数分别模\(3\)\(5\)得到的余数形成的有序对\(x = (x \bmod 3, x \bmod 5)\)

\(x\)\(x \bmod 3\)\(x \bmod 5\)
000
111
222
303
414
520
601
712
823
904
1010
1121
1202
1313
1424

我们发现每一个有序对都是不同的, 因为根据中国剩余定理, \(x \bmod 3 = y \bmod 3\)\(x \bmod 5 = y \bmod 5\)的充分必要条件为\(x \bmod 15 = y \bmod 15\).

因此我们可以在两个分量上独立执行加法, 减法和乘法: 考虑用\(13 = (1, 3)\)来乘上\(7 = (1, 2)\), 这相当于独立计算\(1 \times 1 \bmod 3 = 1\)以及\(2 \times 3 \bmod 5 = 1\), 因此答案是\((1, 1) = 1\).

因而\(7 \times 13 \bmod 15 = 1\).

转载于:https://www.cnblogs.com/ZeonfaiHo/p/7573113.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
智慧校园的建设目标是通过数据整合、全面共享,实现校园内教学、科研、管理、服务流程的数字化、信息化、智能化和多媒体化,以提高资源利用率和管理效率,确保校园安全。 智慧校园的建设思路包括构建统一支撑平台、建立完善管理体系、大数据辅助决策和建设校园智慧环境。通过云架构的数据中心与智慧的学习、办公环境,实现日常教学活动、资源建设情况、学业水平情况的全面统计和分析,为决策提供辅助。此外,智慧校园还涵盖了多媒体教学、智慧录播、电子图书馆、VR教室等多种教学模式,以及校园网络、智慧班牌、校园广播等教务管理功能,旨在提升教学品质和管理水平。 智慧校园的详细方案设计进一步细化了教学、教务、安防和运维等多个方面的应用。例如,在智慧教学领域,通过多媒体教学、智慧录播、电子图书馆等技术,实现教学资源的共享和教学模式的创新。在智慧教务方面,校园网络、考场监控、智慧班牌等系统为校园管理提供了便捷和高效。智慧安防系统包括视频监控、一键报警、阳光厨房等,确保校园安全。智慧运维则通过综合管理平台、设备管理、能效管理和资产管理,实现校园设施的智能化管理。 智慧校园的优势和价值体现在个性化互动的智慧教学、协同高效的校园管理、无处不在的校园学习、全面感知的校园环境和轻松便捷的校园生活等方面。通过智慧校园的建设,可以促进教育资源的均衡化,提高教育质量和管理效率,同时保障校园安全和提升师生的学习体验。 总之,智慧校园解决方案通过整合现代信息技术,如云计算、大数据、物联网和人工智能,为教育行业带来了革命性的变革。它不仅提高了教育的质量和效率,还为师生创造了一个更加安全、便捷和富有智慧的学习与生活环境。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值