关于 Bellman-Ford 与 Floyd 算法的一点感想

本文探讨了在最短路径算法中,Floyd和Bellman-Ford算法的特点和应用场景。Floyd算法通过枚举三点组合,适合求解稠密图中任意两点间的最短路径;而Bellman-Ford作为SPFA的前身,虽然时间复杂度较高,但能检测负权回路,常用于差分约束系统。
摘要由CSDN通过智能技术生成

在四种常用的最短路算法 Dijkstra, SPFA, floyd, Bellman-Ford 中, Dijks 和 SPFA 的使用较为普遍, 对大多数人来说, 也较为熟悉. 然而, floyd 与 BF 算法在一些特定的情况下也是非常管用的, 因此有必要在这里作出一点总结.
Floyd的基本思路就是枚举任意两个点i, j, 再枚举任意的第三个点k, 用d[i][k] + d[j][k] 来松弛d[i][j]的值. 时间复杂度为O(n ^ 3), 优点在于可以求出任意两点之间的距离, 在稠密图中也非常管用.

#include<iostream>
#include<vector>
using namespace std;
const int &INF=100000000;
void floyd(vector<vector<int> > &distmap,//可被更新的邻接矩阵,更新后不能确定原有边
           vector<vector<int> > &path)//路径上到达该点的中转点
//福利:这个函数没有用除INF外的任何全局量,可以直接复制!
{
    const int &NODE=distmap.size();//用邻接矩阵的大小传递顶点个数,减少参数传递
    path.assign(NODE,vector<int>(NODE,-1));//初始化路径数组 
    for(int k=1; k!=NODE; ++k)//对于
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值