在四种常用的最短路算法 Dijkstra, SPFA, floyd, Bellman-Ford 中, Dijks 和 SPFA 的使用较为普遍, 对大多数人来说, 也较为熟悉. 然而, floyd 与 BF 算法在一些特定的情况下也是非常管用的, 因此有必要在这里作出一点总结.
Floyd的基本思路就是枚举任意两个点i, j, 再枚举任意的第三个点k, 用d[i][k] + d[j][k] 来松弛d[i][j]的值. 时间复杂度为O(n ^ 3), 优点在于可以求出任意两点之间的距离, 在稠密图中也非常管用.
#include<iostream>
#include<vector>
using namespace std;
const int &INF=100000000;
void floyd(vector<vector<int> > &distmap,//可被更新的邻接矩阵,更新后不能确定原有边
vector<vector<int> > &path)//路径上到达该点的中转点
//福利:这个函数没有用除INF外的任何全局量,可以直接复制!
{
const int &NODE=distmap.size();//用邻接矩阵的大小传递顶点个数,减少参数传递
path.assign(NODE,vector<int>(NODE,-1));//初始化路径数组
for(int k=1; k!=NODE; ++k)//对于