Solution
我们发现, 对于一条路径来说, 花费总时间为\(ap + q\), 其中\(p\)和\(q\)为定值. 对于每个点, 我们有多条路径可以到达, 因此对于每个区间中的\(a\)我们可以找到不同的\(p\)和\(q\)使得答案最优. 因此对每个点维护一个凸包即可. 同时我们注意到\(0 \le a \le 1\), 因此凸包中的元素不会无限增长.
考虑如何构建这个凸包? SPFA即可. 具体实现见代码.
#include <cstdio>
#include <cctype>
#include <vector>
#include <deque>
#include <set>
#define vector std::vector
#define deque std::deque
#define set std::set
namespace Zeonfai
{
inline int getInt()
{
int a = 0, sgn = 1;
char c;
while(! isdigit(c = getchar())) if(c == '-') sgn *= -1;
while(isdigit(c)) a = a * 10 + c - '0', c = getchar();
return a * sgn;
}
}
const int N = 200;
int n, m, S, T;
struct point
{
int x, y;
inline point() {}
inline point(int _x, int _y) {x = _x; y = _y;}
inline int friend operator <(point a, point b) {return a.x == b.x ? a.y < b.y : a.x < b.x;}
inline int friend operator ==(point a, point b) {return a.x == b.x && a.y == b.y;}
};
double slope(point a, point b) {return a.x == b.x ? 1e50 : (double)(a.y - b.y) / (a. x - b.x);}
struct graph
{
struct node;
struct edge
{
node *v; int x, y;
inline edge(node *_v, int _x, int _y) {v = _v; x = _x; y = _y;}
};
struct node
{
vector<edge> edg;
set<point> st;
inline node() {edg.clear(); st.clear();}
inline int check(point p) {return st.find(p) != st.end();}
inline int insert(point p)
{
st.insert(p);
static point stk[N * N]; int tp = 0;
for(auto cur : st)
{
while(tp >= 2 && slope(stk[tp - 1], stk[tp - 2]) > slope(cur, stk[tp - 1])) -- tp;
while(tp >= 1 && slope(cur, stk[tp - 1]) < 0) -- tp;
if(! tp || slope(cur, stk[tp - 1]) <= 1) stk[tp ++] = cur;
}
st.clear();
for(int i = 0; i < tp; ++ i) st.insert(stk[i]);
return st.find(p) != st.end();
}
inline double getAnswer()
{
static point p[N * N]; int cnt = 0;
for(auto cur : st) p[cnt ++] = cur;
if(cnt == 0) return 0;
else if(cnt == 1) return (double)(p[0].y - p[0].x + p[0].y) / 2;
else
{
double res = 0;
res += (double)(p[0].y - slope(p[1], p[0]) * p[0].x + p[0].y) * slope(p[1], p[0]) / 2;
res += (double)(- slope(p[cnt - 1], p[cnt - 2]) * p[cnt - 1].x + p[cnt - 1].y - p[cnt - 1].x + p[cnt - 1].y) * (1 - slope(p[cnt - 1], p[cnt - 2])) / 2;
for(int i = 1; i < cnt - 1; ++ i)
res += (double)(- slope(p[i], p[i - 1]) * p[i].x + p[i].y - slope(p[i + 1], p[i]) * p[i].x + p[i].y) * (slope(p[i + 1], p[i]) - slope(p[i], p[i - 1])) / 2;
return res;
}
}
} nd[N + 1];
inline void addEdge(int u, int v, int x, int y)
{
nd[u].edg.push_back(edge(nd + v, x, y)); nd[v].edg.push_back(edge(nd + u, x, y));
}
struct record
{
node *u; int x, y;
inline record(node *_u, int _x, int _y)
{
u = _u; x = _x; y = _y;
}
};
inline void SPFA()
{
deque<record> que; que.clear(); que.push_back(record(nd + S, 0, 0)); nd[S].st.insert(point(0, 0));
for(; ! que.empty(); que.pop_front())
{
record cur = que.front();
if(! cur.u->check(point(cur.y - cur.x, cur.y))) continue;
for(auto edg : cur.u->edg) if(edg.v->insert(point(edg.y + cur.y - edg.x - cur.x, edg.y + cur.y))) que.push_back(record(edg.v, cur.x + edg.x, cur.y + edg.y));
}
}
}G;
int main()
{
#ifndef ONLINE_JUDGE
freopen("path.in", "r", stdin);
freopen("path.out", "w", stdout);
#endif
using namespace Zeonfai;
n = getInt(), m = getInt(), S = getInt(), T = getInt();
for(int i = 0; i < m; ++ i)
{
int u = getInt(), v = getInt(), x = getInt(), y = getInt();
G.addEdge(u, v, x, y);
}
G.SPFA();
printf("%.5lf", G.nd[T].getAnswer());
}