BZOJ 4025 二分图

题目大意

给定一个\(n\)个点, \(m\)条边的无向图, 每条边在一定时间范围内存在. 要你判断每个时间点这张图是否为二分图.
\(n \le 10^5\)
\(m \le 2 \times 10^5\)

Solution

我们考虑一个合法的二分图有什么性质: 图中不存在奇环, 即环上边数(点数)为奇数的环.
考虑如何判断每个时刻是否存在奇环. 考虑我们把一条边加入一张图中可能的情况:

  • 将两个不联通的块连接在一起. 不会产生新的奇环.
  • 将一棵树上的两个点连接在一起. 假如这两个点之间的路径上的点数为奇数, 则会产生奇环; 否则不会产生奇环.
  • 将一张图上的两个点连接在一起. 我们考虑这张图是由一棵树, 再加上一些边形成的. 我们假设在加入这条边之前的图中不存在奇环, 则假如树上这两点间的路径上的点数为奇数, 则会产生奇环; 否则不会产生奇环. 换而言之, 之前存在的偶环不影响答案.

因此我们用link-cut tree维护这张图. 我们又考虑到边会消失, 因此每次我们加入一条边时, 进行如下讨论:

  • 假如这条边连接的是两颗不相连的树, 则直接加入这条边
  • 假如这条边连接的是一棵树上的两个点, 则考虑是否需要更新答案. 同时我们还需要用这条边更新两点间树上所有连边中最早消失的一条(即删掉最早消失的边, 并且连接上当前边. 当然, 假如当前边的消失时间早于最早消失的边, 则不用作任何修改).

这样即可保证任意两个相连的点之间, 最晚消失的边存在于树上, 因而保证正确性.

#include <cstdio>
#include <cctype>
#include <algorithm>

using namespace std;
namespace Zeonfai
{
    inline int getInt()
    {
        int a = 0, sgn = 1; char c;
        while(! isdigit(c = getchar())) if(c == '-') sgn *= -1;
        while(isdigit(c)) a = a * 10 + c - '0', c = getchar();
        return a * sgn;
    }
}
const int N = (int)1e5, M = (int)2e5, INF = (int)2e9, T = (int)1e5;
int n, m;
int ans[T + 1];
struct edge
{
    int u, v, L, R;
    inline int operator <(const edge &a) const {return L == a.L ? R < a.R : L < a.L;}
}edg[M];
struct linkCutTree
{
    int tp;
    struct node
    {
        int pre, suc[2], isRoot, rev;
        int w, mn, sz;
        inline node() {pre = -1; for(int i = 0; i < 2; ++ i) suc[i] = -1; isRoot = 1; rev = 0; sz = 1;}
    }nd[N + 1 + M];
    inline void initialize()
    {
        for(int i = 1; i <= n; ++ i) nd[i].w = INF, nd[i].mn = i;
        tp = n + 1;
    }
    inline void pushDown(int u)
    {
        if(! nd[u].isRoot) pushDown(nd[u].pre);
        if(nd[u].rev)
        {
            for(int i = 0; i < 2; ++ i) if(~ nd[u].suc[i])
                swap(nd[nd[u].suc[i]].suc[0], nd[nd[u].suc[i]].suc[1]), nd[nd[u].suc[i]].rev ^= 1;
            nd[u].rev = 0;
        }
    }
    inline int getRelation(int u) {return u == nd[nd[u].pre].suc[1];}
    inline void update(int u)
    {
        nd[u].mn = u; nd[u].sz = 1;
        for(int i = 0; i < 2; ++ i) if(~ nd[u].suc[i])
        {
            if(nd[nd[nd[u].suc[i]].mn].w < nd[nd[u].mn].w) nd[u].mn = nd[nd[u].suc[i]].mn;
            nd[u].sz += nd[nd[u].suc[i]].sz;
        }
    }
    inline void rotate(int u)
    {
        int pre = nd[u].pre, prepre = nd[pre].pre, k = getRelation(u);
        nd[pre].suc[k] = nd[u].suc[k ^ 1]; if(~ nd[u].suc[k ^ 1]) nd[nd[u].suc[k ^ 1]].pre = pre;
        nd[u].pre = prepre; if(! nd[pre].isRoot) nd[prepre].suc[getRelation(pre)] = u;
        nd[pre].pre = u; nd[u].suc[k ^ 1] = pre;
        if(nd[pre].isRoot) nd[pre].isRoot = 0, nd[u].isRoot = 1;
        update(pre); update(u);
    }
    inline void splay(int u)
    {
        pushDown(u);
        while(! nd[u].isRoot)
        {
            if(! nd[nd[u].pre].isRoot) rotate(getRelation(u) == getRelation(nd[u].pre) ? nd[u].pre : u);
            rotate(u);
        }
    }
    inline void access(int u)
    {
        splay(u);
        if(~ nd[u].suc[1])
        {
            nd[nd[u].suc[1]].isRoot = 1;
            nd[u].suc[1] = -1; update(u);
        }
        while(~ nd[u].pre)
        {
            int pre = nd[u].pre;
            splay(pre);
            if(~ nd[pre].suc[1])
            {
                nd[nd[pre].suc[1]].isRoot = 1;
                nd[pre].suc[1] = -1; update(pre);
            }
            nd[pre].suc[1] = u; nd[u].isRoot = 0; update(pre);
            splay(u);
        }
    }
    inline void makeRoot(int u)
    {
        access(u); swap(nd[u].suc[0], nd[u].suc[1]); nd[u].rev ^= 1;
    }
    inline int get(int u)
    {
        access(u);
        while(~ nd[u].suc[0]) u = nd[u].suc[0];
        return u;
    }
    inline int newNode(int w) {nd[tp].w = w; nd[tp].mn = tp; return tp ++;}
    inline void link(int id)
    {
        int u = edg[id].u, v = edg[id].v;
        if(get(u) == get(v))
        {
            makeRoot(u); access(v);
            int x = nd[v].mn;
            if(nd[x].w > edg[id].L && nd[v].sz + 1 >> 1 & 1) for(int i = edg[id].L + 1; i <= min(nd[x].w, edg[id].R); ++ i) ans[i] = 1;
            if(nd[x].w > edg[id].R) return;
            access(x); nd[nd[x].suc[0]].pre = -1; nd[nd[x].suc[0]].isRoot = 1; nd[x].suc[0] = -1;
            makeRoot(v); access(x); nd[nd[x].suc[0]].pre = -1; nd[nd[x].suc[0]].isRoot = 1; nd[x].suc[0] = -1;
        }
        makeRoot(u); makeRoot(v);
        int x = newNode(edg[id].R); nd[x].pre = u; nd[v].pre = x;
        return;
    }
}LCT;
int main()
{

#ifndef ONLINE_JUDGE

    freopen("graph.in", "r", stdin);
    freopen("graph.out", "w", stdout);

#endif

    using namespace Zeonfai;
    n = getInt(), m = getInt(); int T = getInt();
    LCT.initialize();
    for(int i = 0; i < m; ++ i) edg[i].u = getInt(), edg[i].v = getInt(), edg[i].L = getInt(), edg[i].R = getInt();
    sort(edg, edg + m);
    for(int i = 0; i < m; ++ i) LCT.link(i);
    for(int i = 1; i <= T; ++ i) puts(! ans[i] ? "Yes" : "No");
}

转载于:https://www.cnblogs.com/ZeonfaiHo/p/7502056.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值