- 博客(673)
- 资源 (3)
- 收藏
- 关注
原创 AI全景之第七章第三节:人脸识别与活体检测技术
**摘要:人脸识别与活体检测技术已从实验室研究发展为关键社会基础设施。传统方法依赖手工特征(如LBP、PCA),而深度学习(如DeepFace、ArcFace)通过卷积网络和损失函数创新(Triplet、ArcFace)将精度提升至超人类水平。活体检测技术通过运动分析、纹理检测、3D结构分析和生理信号等方法构建多维防线,抵御2D/3D伪造攻击。实际应用中需平衡性能与安全,未来趋势包括多模态融合、隐私保护(联邦学习)和边缘智能。技术面临跨域泛化、对抗攻击等挑战,需符合ISO等标准规范。
2025-12-26 12:36:56
657
原创 AI全景之第七章第二节:语义分割与实例分割
图像分割技术的快速发展为众多领域提供了强大工具。从基础的FCN到复杂的Transformer架构,从语义分割到实例分割,这一领域在精度、速度和通用性方面都取得了显著进步。随着算法持续优化和新应用场景不断涌现,图像分割技术将继续在人工智能和计算机视觉领域扮演关键角色,推动智能系统对视觉世界的深入理解。
2025-12-26 12:30:38
785
原创 AI全景之第七章第一节:图像分类与目标检测算法演进
本文系统梳理了计算机视觉中图像分类与目标检测技术的演进历程。传统图像分类依赖手工特征(如SIFT、HOG)和机器学习分类器,而深度学习革命始于2012年AlexNet的突破,随后VGGNet、GoogLeNet和ResNet等架构通过增加深度、创新结构和残差连接不断提升性能。目标检测从滑动窗口方法发展为两阶段(R-CNN系列)和单阶段(YOLO、SSD)检测器,最新进展包括无锚框检测器和Transformer-based方法。这些技术在医学影像、自动驾驶等领域广泛应用,推动了计算机视觉的快速发展。
2025-12-25 14:53:58
726
原创 AI全景之第六章第五节:知识图谱、信息抽取、对话系统
从非结构化文本到结构化知识,再到拟人化对话,专业领域的自然语言处理技术正在重塑人机交互的边界。想象一下,一个医疗问诊机器人不仅能理解你的症状描述,还能从千万篇医学文献中精准关联相似病例,并给出符合逻辑的诊断建议——这正是知识图谱、信息抽取与对话系统三大技术协同作用的结果。
2025-12-25 14:45:44
958
原创 AI全景之第六章第四节:多模态大模型
本文系统介绍了多模态学习的技术原理与发展趋势。首先阐述了多模态学习的核心概念与挑战,包括模态鸿沟、表示对齐、信息融合等关键问题。随后详细分析了视觉-语言预训练(VLP)的技术演进,从双塔架构到融合编码器,再到统一Transformer的三大范式转变。重点讲解了预训练任务设计方法,包括图像-文本对比学习(ITC)和结合视觉信息的掩码语言建模(MLM)等核心技术。文章还通过代码示例直观展示了不同模型架构的实现方式,为构建多模态AI系统提供了实践指导。最后探讨了多模态模型在跨模态检索、生成、问答等任务中的应用前景
2025-12-24 16:16:43
969
原创 AI全景之第六章第三节:预训练、提示工程、对齐
深入理解大语言模型的三大核心技术支柱:大规模预训练的方法论与挑战、提示工程的设计哲学与实践技巧、对齐技术的原理与实现。掌握从基础模型到对齐模型的完整技术栈,具备在实际项目中应用大语言模型的能力。
2025-12-24 15:46:50
1055
原创 AI全景之第六章第二节:Transformer架构
摘要:Transformer架构在NLP中的关键改进 Transformer架构通过多项创新显著提升了自然语言处理性能。位置编码系统经历了从固定正弦编码到可学习编码的演进,最终发展出相对位置编码(如T5的分桶偏置和DeBERTa的分离式注意力)和旋转位置编码(RoPE)等先进技术。RoPE通过在复数空间旋转注入位置信息,具有相对位置保持、长度外推性强等优势,成为当前主流方案。这些改进有效解决了原始Transformer的长度外推性差、高频振荡等问题,为不同NLP任务提供了更灵活的位置信息建模方式。
2025-12-23 17:05:46
1173
原创 AI全景之第六章第一节:语言模型演进
本文系统梳理了自然语言处理中语言模型的演进历程。从统计语言模型(n-gram及其平滑技术)到神经语言模型(NNLM、RNNLM),再到预训练模型(ELMo、GPT、BERT),展现了技术发展的关键突破。重点分析了BERT的创新之处:双向Transformer架构、掩码语言模型目标、下一句预测任务,以及其通过大规模预训练获得通用语言理解能力的机制。文章不仅阐述了各代模型的技术原理,还对比了它们的优势局限,为理解现代大语言模型奠定了理论基础。
2025-12-23 15:20:03
888
原创 AI全景之第五章第五节:图神经网络(GNN)与几何深度学习
本文介绍了图神经网络(GNN)与几何深度学习的核心概念。首先分析了图结构数据的特性及其与传统规则数据的差异,包括不规则拓扑、置换不变性等特点。然后详细阐述了GNN的消息传递框架,包含消息生成、聚合和更新三个关键步骤,并探讨了GNN的表达能力及其与WL图同构测试的关系。文章还介绍了经典GNN架构,如基于谱图理论的GCN和引入注意力机制的GAT,并提供了代码实现。最后讨论了GNN在节点级和图级任务中的应用,以及传统图机器学习方法的局限性。这些内容为理解和应用GNN处理非欧几里得空间数据提供了理论基础和实践指导。
2025-12-23 15:03:00
694
原创 AI全景之第五章第四节:生成对抗网络(GAN)与扩散模型
生成模型的目标是学习数据分布pdataxpdatax,并能够从学习到的分布中采样生成新的数据样本。
2025-12-22 21:00:26
888
原创 AI全景之第五章第三节:注意力机制与Transformer
本文系统介绍了注意力机制与Transformer架构。注意力机制通过查询(query)与键(key)的相似度对值(value)进行加权求和,其核心数学形式包括点积、缩放点积、加性和双线性等得分函数。Transformer完全基于注意力机制,采用编码器-解码器结构,包含位置编码、多头注意力、前馈网络和残差连接等关键组件。多头注意力通过并行多个注意力头捕获不同特征,位置编码则注入序列顺序信息。文章详细分析了Transformer的计算流程,包括编码器的自注意力和解码器的掩码注意力设计,并讨论了计算复杂度与优化方
2025-12-22 16:05:22
1046
原创 AI全景之第五章第二节:循环神经网络(RNN)与长短时记忆网络(LSTM)
本文介绍了循环神经网络(RNN)及其改进模型LSTM在序列数据处理中的应用。首先分析了序列数据的特点和传统建模方法的局限性,然后详细阐述了RNN的核心思想、架构变体、激活函数选择及训练方法BPTT,重点讨论了RNN的梯度消失和爆炸问题。随后引入LSTM模型,解析其门控机制(遗忘门、输入门、输出门)和细胞状态设计,通过数学分析说明LSTM如何有效缓解梯度问题。文章对比了RNN和LSTM的优缺点,指出LSTM通过选择性记忆机制更适合处理长期依赖关系,为后续Transformer等先进模型奠定了基础。
2025-12-22 11:01:01
828
原创 AI全景之第五章第一节:深度学习(卷积神经网络CNN)
本文系统梳理了卷积神经网络(CNN)从LeNet到ConvNeXt的演进历程。首先介绍了CNN的核心思想与基本组件,包括卷积操作、池化层、激活函数和归一化层。随后重点分析了几个里程碑式架构:LeNet-5开创了CNN基本框架,AlexNet通过ReLU和多GPU训练引爆深度学习,VGGNet证明了深度的重要性,GoogLeNet提出多尺度特征融合的Inception模块,ResNet通过残差连接解决了深度网络退化问题。文章还探讨了各架构的设计哲学、技术突破及局限性,为理解CNN发展脉络和选择合适网络架构提供
2025-12-19 14:28:21
803
原创 AI全景之第四章第五节:机器学习核心技术体系(集成学习)
集成学习通过结合多个基学习器提升模型性能,主要方法包括Bagging(如随机森林)、Boosting(如XGBoost)和Stacking。其有效性源于统计、计算和表示三个维度,关键技术在于增强基学习器多样性。模型解释性技术则分为内在可解释模型和事后解释方法,包括全局解释(PDP、SHAP)和局部解释(LIME、对抗解释)。深度学习的特定解释技术如显著图和注意力机制也日益重要。实际应用中需根据数据特点和业务需求,在模型性能与可解释性间取得平衡,并避免常见误区如盲目增加模型复杂度。
2025-12-19 14:04:27
705
原创 AI全景之第四章第四节:机器学习核心技术体系(特征工程)
本文系统阐述了机器学习中特征工程与模型评估的核心方法论。特征工程包括数据预处理(缺失值处理、异常值检测、标准化)、特征构建(统计型/关联型特征、非结构化数据转换)、特征选择(过滤式/包裹式/嵌入式方法)和特征转换(编码/降维),强调业务理解与数据特性的结合。模型评估部分详细讲解了数据集划分原则(避免数据泄露)、分类/回归/排序任务的评估指标(如精确率、MAE、NDCG)及其业务关联性,以及科学的实验设计方法(基准对比、交叉验证)。文章强调技术指标需转化为实际业务价值,为机器学习实践提供了一套完整的技术闭环。
2025-12-19 13:58:41
659
原创 AI全景之第四章第三节:机器学习核心技术体系(强化学习)
本文系统介绍了强化学习的理论基础与经典算法。首先阐述了强化学习的核心要素(状态、动作、奖励、策略、价值函数)及其交互机制,然后详细讲解了马尔可夫决策过程(MDP)这一理论框架,包括马尔可夫性假设、贝尔曼方程和最优策略求解。重点分析了三类经典算法:基于模型的动态规划(策略迭代和价值迭代)、无模型的蒙特卡洛方法(基于完整轨迹采样),以及结合两者优势的时序差分学习(包括Sarsa和Q-Learning)。文章对比了各类算法的特点与适用场景,指出时序差分学习因其"在线更新+无模型"特性成为连接经
2025-12-18 14:29:00
569
原创 AI全景之第四章第二节:机器学习核心技术体系(无监督学习)
本文系统介绍了无监督学习的三大核心任务:聚类、降维和异常检测。聚类部分重点解析了K-Means、层次聚类和DBSCAN等经典算法;降维技术详细阐述了PCA和t-SNE的原理与应用;异常检测则对比了统计、距离、密度和模型等不同方法。文章强调无监督学习在标签稀缺场景下的独特价值,并指出其与监督学习结合的发展趋势。通过算法原理、优缺点分析和应用场景的详细对比,为读者构建了完整的无监督学习知识体系。
2025-12-18 14:14:42
741
原创 AI全景之第四章第一节:机器学习核心技术体系(监督学习)
本文介绍了监督学习的核心概念与算法,重点阐述了线性回归的原理与应用。监督学习通过带标签数据学习输入到输出的映射关系,可分为回归和分类任务。线性回归作为基础算法,通过最小化均方误差求解模型参数,可采用正规方程或梯度下降法。针对过拟合问题,介绍了L2正则化(岭回归)等优化方法。文章还讨论了监督学习的核心挑战——泛化能力与偏差-方差权衡,为后续更复杂算法的学习奠定基础。
2025-12-18 13:54:52
719
原创 AI全景之第三章:AI开发平台与框架生态
本文系统对比了主流AI开发平台与框架生态。首先分析深度学习三巨头:TensorFlow适合工业部署,PyTorch擅于研究迭代,JAX专注高性能计算。其次介绍国产框架特色:百度飞桨提供全流程支持,华为昇思侧重全场景适配。在云平台方面,AWS SageMaker功能完整,Azure ML Studio易上手,Google Vertex AI整合生成式AI。MLOps工具链部分阐述了模型全生命周期管理的关键组件。最后探讨了AutoML平台和低代码开发降低AI应用门槛的趋势。全文为开发者选择适合的工具提供了全面参
2025-12-17 15:38:26
1024
原创 AI全景之第一章:AI发展简史与技术演进脉络
清晰描述AI发展的关键阶段与转折点理解每次技术范式转移的内在逻辑与驱动因素识别当前大模型技术在历史演进中的位置与特点从历史教训中形成对AI未来发展的理性预期
2025-12-16 14:47:24
784
原创 AI全景介绍系列博客提纲
《AI技术全景探索系列》系统介绍人工智能技术体系,涵盖历史演进、硬件架构、开发框架、核心算法(机器学习与深度学习)、NLP与CV等关键技术,以及行业应用、工程部署和伦理治理。内容从基础到前沿,兼顾理论与实践,帮助读者构建完整的AI知识框架,掌握技术选型能力,并了解未来发展趋势。系列特色包括技术深度与广度平衡、产业视角结合、渐进式学习路径和动态更新机制,适合开发者、学生及AI爱好者系统学习。
2025-12-16 14:40:51
890
原创 K8S总结与展望:Service Mesh、Serverless 及 K8S 发展趋势
Kubernetes正从容器编排平台演变为云原生操作系统,推动服务网格、Serverless等关键技术发展。本文分析了Kubernetes生态的最新演进,重点探讨了服务网格架构的迭代(从Sidecar到eBPF和Proxyless模式)以及Istio的Ambient Mesh创新设计,通过YAML配置展示了智能流量治理和零信任安全架构的实现。文章指出未来云原生将向抽象化、智能化、融合化方向发展,同时面临复杂度爆炸、资源粒度不匹配等挑战。服务网格作为微服务通信的终极方案,正通过技术创新解决东西向流量治理等核心
2025-12-16 14:28:48
822
原创 K8S系列之7.2:异构计算(GPU与vGPU在K8S中的管理与应用)
摘要:本文探讨了在Kubernetes中高效管理GPU资源的关键技术。针对AI时代GPU资源利用率低、调度困难等痛点,提出了基于Kubernetes的解决方案,包括设备插件机制、NVIDIA Device Plugin部署配置以及GPU资源请求规范。重点分析了vGPU技术架构,比较了NVIDIA MIG和vGPU两种方案的隔离级别与适用场景,为企业构建云原生AI平台提供了GPU资源池化、弹性调度和成本优化的实践指导。
2025-12-15 16:58:23
1276
1
原创 K8S系列之7.1:云原生DevOps(CI/CD 在 K8S 中的实践)
摘要: 云原生时代下,GitOps已成为DevOps演进的核心实践,通过将Git作为唯一事实源,实现声明式配置、自动化同步和完整审计的现代化交付流程。传统CI/CD存在环境漂移、手动干预等问题,而GitOps通过四大原则(声明式基础设施、版本控制一切、自动化变更分发、闭环监控)构建可靠流水线。Argo CD作为核心引擎,提供高可用架构与生产级部署方案,支持从代码提交到集群部署的自动化同步。通过Kubernetes清单和Helm Chart的版本化管理,结合自动修复与回滚机制,GitOps显著提升了部署效率和
2025-12-15 16:43:26
743
原创 K8S系列之6.3:资源管理与优化(资源配额、限制范围与潮汐算力)
摘要:本文探讨了Kubernetes集群资源管理的经济学视角,提出了资源共享、公平竞争、弹性伸缩和成本感知四大原则。重点分析了资源配额机制,包括计算资源、存储资源和对象数量配额的具体配置,介绍了配额作用域和动态配额管理策略。文章还提供了基于Prometheus的配额监控方案,帮助管理员实现多租户资源隔离与优化。通过技术手段将资源分配问题转化为可量化的管理问题,为大型集群的资源治理提供了系统化解决方案。
2025-12-12 12:59:22
966
原创 K8S系列之6.2:调度进阶(污点、容忍、亲和性与自定义调度器)
Kubernetes调度器从基础到高级调度策略演进,实现资源最优利用。污点(Taints)与容忍(Tolerations)机制实现节点隔离,通过NoSchedule、PreferNoSchedule和NoExecute三种效果控制Pod调度。节点亲和性(Node Affinity)提供智能节点选择,包括requiredDuringScheduling和preferredDuringScheduling两种类型。高级调度策略支持多环境集群构建和基于污点的滚动维护,通过自动维护Operator实现节点管理。这些
2025-12-12 12:47:56
887
原创 K8S系列之6.1:自定义扩展(CRD 与 Operator 设计模式)
摘要: Kubernetes的CRD(自定义资源定义)和Operator模式可扩展集群功能,将运维知识代码化实现应用自运维。CRD允许创建新的资源类型,通过自定义控制器实现自动化管理。以数据库集群CRD为例,详细展示了如何定义复杂的资源结构,包括版本控制、数据校验、子资源等特性。Operator模式将运维专家的知识编码到软件中,解决传统运维中的重复劳动、知识孤岛等问题,实现应用的自我管理、修复和优化能力。
2025-12-11 13:59:07
892
1
原创 K8S系列之5.3:应用健康与可观测性(探针、监控与日志)
摘要:本文深入探讨云原生系统中的可观测性实践,重点介绍Kubernetes健康检查机制和Prometheus监控体系。第一部分详细解析三种探针(存活、就绪、启动)的配置方法、最佳实践和常见问题解决方案,包括Java应用、数据库和gRPC服务的具体案例。第二部分全面介绍Prometheus监控架构,涵盖数据采集层、核心层、存储层和展示层,并提供了通过Helm部署完整监控栈的实操指南。文章强调可观测性在现代分布式系统中的必要性,为构建可靠的云原生应用提供系统性方法论。
2025-12-11 13:41:54
960
原创 K8S系列之5.2:自动化弹性伸缩(HPA、VPA 与 Cluster Autoscaler)
文章摘要: Kubernetes弹性伸缩技术(HPA/VPA/Cluster Autoscaler)是云原生应用的核心能力,通过自动调整资源应对业务波动。HPA实现Pod水平扩缩容,支持CPU/内存/自定义指标(如QPS)及多指标协同,v2版本提供更灵活的扩缩容行为配置。VPA垂直调整Pod资源配额,Cluster Autoscaler动态增减节点。三者配合可实现分钟级响应、成本优化和自动驾驶式运维,解决传统架构资源浪费、响应延迟等痛点。实践案例展示了从指标采集到自动扩缩容的完整流程,包括Prometheu
2025-12-10 14:19:21
845
1
原创 K8S系列之5.1:集群安全基石(RBAC、ServiceAccount 与 网络策略)
Kubernetes安全是一个深度防御体系:认证层:ServiceAccount为工作负载提供身份授权层:RBAC控制谁能做什么网络层:NetworkPolicy控制流量流向审计层:记录所有操作以供追溯
2025-12-10 14:14:42
1353
原创 深度拆解 Claude 的 Agent 架构:MCP + PTC、Skills 与 Subagents 的三维协同
本文解析了Anthropic在Agent工程领域的三大创新:MCP+PTC、Skills和Subagents。MCP作为标准化连接协议,配合PTC实现高效程序化工具调用;Skills通过模块化"知识胶囊"为Agent注入专业技能;Subagents采用"分而治之"架构处理复杂任务。三者协同工作:MCP提供基础连接能力,Skills补充专业知识,Subagents实现任务分工,共同构建高效灵活的Agent系统。这些创新不仅优化了Claude平台,也为未来Agent框架发
2025-12-09 10:32:19
517
原创 K8S系列之4.2:应用配置与敏感信息管理(ConfigMap 与 Secret)
Kubernetes配置管理最佳实践:ConfigMap与Secret详解 本文深入探讨了Kubernetes中的配置管理解决方案,重点介绍了ConfigMap和Secret的使用方法。传统配置管理存在硬编码、安全风险等问题,而Kubernetes通过"配置即数据"理念实现了配置与代码的彻底分离。文章详细讲解了ConfigMap的创建方式(命令行、文件、目录、环境文件)以及在Pod中的三种使用方式:环境变量注入、命令行参数和卷挂载。ConfigMap为非敏感配置提供了灵活的载体,使应用配
2025-12-09 10:29:07
991
原创 K8S系列之4.1:持久化存储抽象(PV、PVC 与 StorageClass)
Kubernetes存储抽象机制深度解析 摘要: 本文系统剖析了Kubernetes实现持久化存储的三层核心架构:PV(持久卷)、PVC(持久卷声明)和StorageClass(存储类)。通过这种精妙的存储抽象体系,Kubernetes成功解决了容器化环境中的四大存储挑战:短暂性、动态性、异构性和复杂性。文章详细解读了PV的标准化属性与生命周期、PVC的声明式绑定机制,以及StorageClass如何实现动态存储供应策略,为云原生应用提供了灵活可靠的持久化存储解决方案。这种架构设计不仅实现了存储资源的解耦管
2025-12-09 10:26:32
955
原创 K8S系列之3.3:下一代流量标准(Gateway API 详解)
Gateway API:下一代K8S流量管理标准 Gateway API是Kubernetes官方推出的Ingress API继任者,旨在解决传统Ingress在角色分离、功能表达和多租户支持等方面的根本性不足。其核心创新包括: 分层资源模型:通过GatewayClass、Gateway和Route三类资源实现职责分离,分别对应基础设施提供商、集群运维和应用开发者角色。 结构化扩展:将Ingress中依赖注解实现的功能标准化为API字段,支持流量拆分、请求头修改等高级特性。 细粒度多租户:通过allowed
2025-12-08 14:38:08
1136
原创 《金融大模型国产化信创适配项目》概要说明(THS)
摘要:《金融大模型国产化信创适配项目》旨在打造全栈自主的金融行业大模型解决方案,以同花顺自研HiThinkGPT系列模型为核心,构建大模型管理平台和智能体开发工坊,支持风控、客服、投研等场景应用。项目深度适配华为昇腾等国产信创技术,提供双技术路线部署方案,确保安全合规与高性能。通过低代码开发平台和预置智能体,降低AI应用门槛,助力金融机构快速实现业务创新。方案兼顾技术自主性、业务适配性和运营可持续性,为金融信创转型提供全面支撑。(150字)
2025-12-08 14:15:21
896
原创 K8S系列之3.2:南北向流量网关(Ingress 与 Ingress Controller)
Kubernetes Ingress 是集群南北向流量管理的核心组件,它通过声明式路由规则和控制器架构实现了高效的应用层流量管理。本文深入解析了Ingress的设计价值、架构原理和路由机制。相比传统Service暴露方式,Ingress提供了统一入口、基于内容的路由和集中TLS管理等优势。其架构采用资源与控制器分离模式,Ingress资源定义路由规则,而控制器负责实际流量转发。文章详细介绍了基于主机和路径的路由机制,以及多控制器支持的IngressClass概念。Ingress通过智能流量调度实现了从基础设
2025-12-08 13:49:42
1152
原创 K8S系列之3.1:服务发现与负载均衡(Service 核心原理)
Kubernetes Service是解决Pod动态性挑战的核心机制,提供四种服务类型满足不同场景需求:ClusterIP(集群内部访问)、NodePort(节点端口暴露)、LoadBalancer(云平台集成)和ExternalName(外部服务别名)。Service通过稳定的虚拟IP和DNS名称,配合kube-proxy的流量转发(iptables/IPVS模式),实现动态Pod发现与负载均衡。这种设计使应用无需关注后端Pod的变化,确保服务访问的稳定性,是Kubernetes微服务架构的关键网络抽象层
2025-12-06 10:54:45
831
原创 K8S系列之2.4:Job、CronJob与DaemonSet(任务与守护进程)
Kubernetes提供了三种特殊的工作负载类型来处理不同任务场景: Job - 用于运行一次性批处理任务,确保任务完成(exit 0)后终止。支持并发控制和失败重试,适合数据处理、数据库迁移等场景。 CronJob - 基于时间调度的Job,用于周期性任务如报表生成、定期备份等。类似Linux的crontab。 DaemonSet - 确保每个节点运行一个Pod副本,适合节点级任务如日志收集、网络插件等。 这三种类型填补了Kubernetes在任务型工作负载的空白,与Deployment/Stateful
2025-12-06 10:51:06
1060
原创 K8S系列之2.3:StatefulSet与持久化存储(有状态应用的基石)
Kubernetes中的StatefulSet为有状态服务提供了稳定身份、有序部署和持久化存储的核心特性。与无状态的Deployment不同,StatefulSet通过Headless Service为每个Pod提供唯一DNS标识,按序数索引顺序创建Pod,并配合volumeClaimTemplate实现专属持久化存储。其控制器机制确保有序扩缩容,支持三种更新策略(RollingUpdate/OnDelete/分区更新),特别适合数据库、消息队列等需要稳定拓扑和数据持久性的场景。StatefulSet通过精
2025-12-05 11:18:01
1060
2025面试经验-科大讯飞-系统架构师
2025-04-09
2025面试经验-阿里云智能-技术服务专家
2025-04-09
2025面试经验-海康萤石-Java应用架构师
2025-04-09
2025面试经验-京东零售-Java开发
2025-04-09
【信息技术领域】系统试运行保障及应急预案:构建全面的信息系统应急响应机制与试运行保障体系为系统试运行
2025-04-03
流程规范\研发规范\代码规范\前端\React编码规范
2025-04-03
流程规范\研发规范\代码规范\前端\HTML编码规范
2025-04-03
流程规范\研发规范\代码规范\前端\Flutter编码规范
2025-04-03
流程规范\研发规范\代码规范\前端\ESLINT规范
2025-04-03
流程规范\研发规范\代码规范\后端\6.安全规约
2025-04-03
流程规范\研发规范\代码规范\后端\附:专有名词解释
2025-04-03
流程规范\研发规范\代码规范\后端\5.设计规约
2025-04-03
流程规范\研发规范\代码规范\后端\4.工程结构
2025-04-03
流程规范\研发规范\代码规范\后端\1.编程规约
2025-04-03
流程规范\研发规范\代码规范\后端\3.单元测试
2025-04-03
流程规范\研发规范\代码规范\后端\2.异常日志
2025-04-03
Linux系统核心命令与基础架构配置指南
2025-03-25
人工智能基于云原生的AI Agent基础设施:金融领域大模型多模态应用加速落地方案设计
2025-11-10
容器编排基于Kubernetes的调度器架构与扩展机制研究:集群资源分配优化及异构算力调度实践
2025-11-10
这篇论文《Real-Time Detection of Hallucinated Entities in Long-Form Generation》提出了一种实时检测大语言模型在生成长文本时产生幻觉实
2025-10-20
第八弹-Real-Time Detection of Hallucinated Entities in Long-Form Generatio-pro.html
2025-10-20
用嘴画图:AI 一句简介:还在为画图头疼吗? * 产品画流程图,排版半天; * 售前看到竞对一张好图,想拿过来,要一笔笔画; * 开发想要架构图,还得手动画 这次分享带你体验:一句话搞定架构图流程图
2025-09-16
【大模型微调】基于Qwen3-8B的人设定制化训练:金融领域Hithink角色构建与评测系统实现
2025-09-16
【大模型微调】基于LoRA算法的LLaMA-Factory框架在法律领域中文语料上的SFT微调实践与参数优化指南
2025-09-16
H3C CAS 云计算管理平台 开局指导-E0785及之后版本-5W100-整本手册
2025-04-22
【Linux系统管理】常用命令汇总:磁盘挂载、Docker操作、防火墙配置与服务管理
2025-04-22
H3C CAS云计算管理平台 安装指导-E0785系列-5W113-整本手册
2025-04-22
2025面试经验-阿里云-交付架构师
2025-04-16
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅