题目:
100可以表示为带分数的形式:100 = 3+ 69258 / 714
还可以表示为:100 = 82 + 3546 / 197
注意特征:带分数中,数字 1∼9 分别出现且只出现一次(不包含 0)。
类似这样的带分数,100 有 11 种表示法。
输入格式
一个正整数。
输出格式
输出输入数字用数码 1∼9 不重复不遗漏地组成带分数表示的全部种数。
数据范围
1≤N<1e6
输入样例1:
100
输出样例1:
11
输入样例2:
105
输出样例2:
6
思路:
枚举1~9的全排列, 然后用隔板法确定 a、b、c的值,最后通过计算确定是否是一个带分数。
时间复杂度分析:
9!* 9 * 8 * 7 / 2 = 91 445 760, 因为本题常数较小,是可以过的!
思路实现:
1. 枚举1~9的全排列, 并用隔板法将a、b、c分隔出来, 通过计算确定这个组合是否为带分数
void dfs(int u) //u表示进入到了第几层递归
{
if(u > 9)
{
//i, j为两个隔板 用于分隔出 a、b、c
for(int i = 1; i <= 9; i++)
{
for(int j = i + 1; j < 9; j++)
{
int a = cal(1, i);
int b = cal(i + 1, j);
int c = cal(j + 1, 9);
// N = a + b / c ------> 通分 N * c = a * c + b
if(n * c == a * c + b)
cnt++;
}
}
}
//枚举 1 ~ 9 的全排列
for(int i = 1; i <= 9; i++)
{
if(!st[i]) //如果 i 这个数 还没有被选中
{
st[i] = true; // true表示这个数被用过了
num[u] = i; //存放选中的数
dfs(u + 1);
st[i] = false; //恢复现场
}
}
}
2. 计算 a、b、c的值 (将数组转化为数字)
int cal(int l, int r) //l、r表示隔板区间
{
int sum = 0;
for(int i = l; i <= r; i++)
sum = sum * 10 + num[i]; //sum左移并且加上第i个数
return sum;
}
完整代码(C++):
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
int n;
int cnt;
bool st[20];
int num[20];
int cal(int l, int r)
{
int sum = 0;
for(int i = l; i <= r; i++)
sum = sum * 10 + num[i];
return sum;
}
void dfs(int u)
{
if(u > 9)
{
for(int i = 1; i <= 9; i++)
{
for(int j = i + 1; j < 9; j++)
{
int a = cal(1, i);
int b = cal(i + 1, j);
int c = cal(j + 1, 9);
if(n * c == a * c + b)
cnt++;
}
}
}
for(int i = 1; i <= 9; i++)
{
if(!st[i])
{
st[i] = true;
num[u] = i;
dfs(u + 1);
st[i] = false;
}
}
}
int main()
{
cin >> n;
dfs(1);
cout << cnt << endl;
return 0;
}