【蓝桥杯】带分数

题目:

100可以表示为带分数的形式:100 = 3+ 69258 / 714

还可以表示为:100 = 82 + 3546 / 197

注意特征:带分数中,数字 1∼9 分别出现且只出现一次(不包含 0)。

类似这样的带分数,100 有 11 种表示法。

输入格式

一个正整数。

输出格式

输出输入数字用数码 1∼9 不重复不遗漏地组成带分数表示的全部种数。

数据范围

1≤N<1e6

输入样例1:

100

输出样例1:

11

输入样例2:

105

输出样例2:

6

思路:

枚举1~9的全排列, 然后用隔板法确定 a、b、c的值,最后通过计算确定是否是一个带分数。

时间复杂度分析:

9!* 9 * 8 * 7 / 2 = 91 445 760, 因为本题常数较小,是可以过的!

思路实现:

  1. 枚举1~9的全排列, 并用隔板法将a、b、c分隔出来, 通过计算确定这个组合是否为带分数

void dfs(int u) //u表示进入到了第几层递归
{
    if(u > 9)
    {
        //i, j为两个隔板 用于分隔出 a、b、c
        for(int i = 1; i <= 9; i++)
        {
            for(int j = i + 1; j < 9; j++)
            {
                int a = cal(1, i);
                int b = cal(i + 1, j);
                int c = cal(j + 1, 9);
                // N = a + b / c ------> 通分 N * c = a * c + b
                if(n * c == a * c + b) 
                    cnt++;
            }
        }
    }
    
    //枚举 1 ~ 9 的全排列
    for(int i = 1; i <= 9; i++)
    {
        if(!st[i]) //如果 i 这个数 还没有被选中
        {
            st[i] = true; // true表示这个数被用过了
            num[u] = i; //存放选中的数
            dfs(u + 1);
            st[i] = false; //恢复现场
        }
    }
}

2. 计算 a、b、c的值 (将数组转化为数字)

int cal(int l, int r) //l、r表示隔板区间
{
    int sum = 0;
    for(int i = l; i <= r; i++)
        sum = sum * 10 + num[i]; //sum左移并且加上第i个数
    return sum;
}

完整代码(C++):

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>

using namespace std;

int n;
int cnt;
bool st[20];
int num[20];

int cal(int l, int r)
{
    int sum = 0;
    for(int i = l; i <= r; i++)
        sum = sum * 10 + num[i];
    return sum;
}

void dfs(int u)
{
    if(u > 9)
    {
        for(int i = 1; i <= 9; i++)
        {
            for(int j = i + 1; j < 9; j++)
            {
                int a = cal(1, i);
                int b = cal(i + 1, j);
                int c = cal(j + 1, 9);
                if(n * c == a * c + b) 
                    cnt++;
            }
        }
    }
    
    for(int i = 1; i <= 9; i++)
    {
        if(!st[i])
        {
            st[i] = true;
            num[u] = i;
            dfs(u + 1);
            st[i] = false;
        }
    }
}

int main()
{
    cin >> n;
    dfs(1);
    
    cout << cnt << endl;
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dkl2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值