
深度学习
文章平均质量分 60
童话ing
放弃不难,但坚持一定很酷。
展开
-
【Python】matplotlib.pyplot画热图和损失图
一、损失函数图import matplotlib.pyplot as pltfile = open('E:\\5120154230PythonCode\\PBAN-PyTorch-master\\state_dict\\loss\\PBAN_New_restaurant15_0.001_80_0.2_16.csv') # 打开文档data = file.readlines() # 读取文档数据para_1 = [] # 新建列表,用于保存第一列数据para_2 = [] # 新建列表,用于原创 2022-03-29 21:04:18 · 4136 阅读 · 0 评论 -
【论文写作技巧】Endnote参考文献统一输出格式
前言最近在写毕业论文,参考文献之类的管理最烦了,好在之前学过一点EndNote,但并不知道怎么设置指定的参考文献格式,于是上网查看下资料进行总结。学校要求的是使用国家推荐标准GB/T 7714-2005 规范文后参考文献的格式。本次这里就以Endnote X9软件为例说明怎么制作GB/T7714的输出格式。环境要求:Word(推荐)/WPS、EndNote X9本次需要使用到两个style,下载:Chinese Std GBT7714**.ens提取码:xvgi踩坑说明:为什么推荐使用Word,原创 2022-01-20 15:54:54 · 42368 阅读 · 11 评论 -
【Latex】latex导入svg图片
1、下载inkscape: https://inkscape.org/release/all/windows/64-bit/exe/安装过程中勾选添加环境变量,如果未勾选就手动添加。使用命令检查是否安装成功inkscape -V.2、利用inkscape将svg转为 pdf和pdf_tex在svg图片所在目录上方进入cmd(也可以先进cmd后再cd到svg图片所在目录),执行以下命令。以demo.svg为例:## inkscape version 为 1.xinkscape -D --exp原创 2021-03-07 10:52:34 · 10132 阅读 · 1 评论 -
【Latex】latex中长公式换行,行内公式换行
比较简单的情况:方程组\begin{equation}\begin{aligned} or \begin{array}{1}&\alpha ^v = \chi ^v \phi _v \\(换行符),&对齐符,放到自己想对齐的地方(但是在array环境下不能用)&\alpha ^m = \chi ^c \phi _m \\ &\chi ^v = - \left( {\tau /3} \right)\left\langle {u \cdot \nabla原创 2021-03-01 21:03:08 · 37318 阅读 · 1 评论 -
【Latex】快速将表格转换为Latex代码两种方式
方式一:在线转换目前许多在线转换工具,如TablesGenerator和TableConvert,目前TablesGenerator不能访问,貌似已经挂了,这里以TableConvert作为说明。TableConvert 是一个可以在线转换表格的工具,支持 Markdown 表格、CSV、JSON、XML、YAML、SQL、HTML 表格、Excel 和 LaTeX 表格,并且还内嵌了一个表格编辑器,像微软的 Excel 一样编辑,使用非常方便。功能列表:转换,编辑和生成 Markdown 表格、原创 2021-02-27 16:01:47 · 20100 阅读 · 3 评论 -
【综述】方面级情感分析 Aspect-level Sentiment Classification
随着信息技术快速发展,在互联网上发表评论已成为人们表达观点传递经验的重要途径。与此同时,互联网评论文本也成为人们寻找决策参考信息的重要来源。然而,信息爆炸式增长使得从中获取有用信息的难度加大。对评论文本所表达的观点进行自动获取的情感分析技术,通过对文本中的观点、情感、评价和态度进行计算,实现自动化情感识别,为用户获取观点信息带来便利。 文本情感分析,也称为观点挖掘(Opinion Mining),是针对人们对实体(包括产品、服务、组织、个人、议题、事件、话题及他们的属性等)表达的观点、评价、态度和情原创 2020-12-22 16:04:29 · 17906 阅读 · 4 评论 -
神经网络训练时损失(loss)不下降常见解决办法以及训练时损失出现nan可能原因以及解决
本文来源于知乎,转载一下进行收藏,文章来源:如何解决神经网络训练时loss不下降的问题1、训练集loss不下降 训练集的loss在训练过程中迟迟不下降,一般是由这几个方面导致的,这一点在我之前的文章《深度学习:欠拟合问题的几种解决方案》中基本都涉及到了,详细内容可以查看原文,本文中,将这些内容面再做一个扩充。1.1 模型结构和特征工程存在问题 如果一个模型的结构有问题,那么它就很难训练,通常,自己“自主研发”设计的网络结构可能很难适应实际问题,通过参考别人已经设计好并实现和测试过的结构,以及.转载 2020-11-11 16:18:12 · 70688 阅读 · 1 评论 -
正则化理解+负采样理解以及神经网络中的负采样
纯转载文章,旨在便于自己空的时候观看。一直很好奇,模式识别理论中,常提到的正则化到底是干什么的?在这里真心感谢 迷雾forest 那么费脑组织语言、那么费卡路里打字、那么有责任心的分享!正则化:正则化的目的:防止过拟合!正则化的本质:约束(限制)要优化的参数。关于第1点,过拟合指的是给定一堆数据,这堆数据带有噪声,利用模型去拟合这堆数据,可能会把噪声数据也给拟合了,这点很致命,一方面会造成模型比较复杂(想想看,本来一次函数能够拟合的数据,现在由于数据带有噪声,导致要用五次函数来拟合转载 2020-10-15 21:55:26 · 1607 阅读 · 0 评论 -
神经网络的学习为何要设定损失函数以及为什么要使用交叉熵损失函数
文章目录一、神经网络的学习为何要设定损失函数二、为什么用交叉熵做损失函数1.信息熵2.相对熵(KL散度)3.交叉熵4.为什么使用交叉熵5.使用场景纯转载文章,链接见文末一、神经网络的学习为何要设定损失函数▍基本概念:神经网络中的“学习”是指从训练数据中自动获取最优权重参数的过程。学习的目的就是以该损失函数为基准,找出能使它的值达到最小的权重参数。▍问题描述:可能有人会问:我们想获得的是能提高识别精度的参数,特意再导入一个损失函数不是有些重复劳动吗?既然我们的目标是获得使识别精度尽可能高的神经原创 2020-09-27 11:58:05 · 2248 阅读 · 0 评论 -
神经网络中全连接层
1、全连接层的每一个结点都与上一层的所有结点相连,用来把前边提取到的特征综合起来。由于其全相连的特性,一般全连接层的参数也是最多的。对于卷积神经网络CNN来说,全连接层之前的作用是提取特征,全连接层的作用是分类。从上图,可以看出:红色的神经元表示这个特征被找到了(激活了),同一层的其他神经元,要么猫的特征不明显,要么没找到。当我们把这些找到的特征组合在一起,发现最符合要求的是猫,则认为这是猫了!2、 全连接层为什么大部分是两层 ?线性部分:主要做线性转换,输入用X表示,输出用Z表示非线性部分原创 2020-09-04 19:24:17 · 4153 阅读 · 1 评论 -
一文读懂深度学习中的Epoch,Batchsize,Iterations区别+常见过拟合欠拟合解决和batchsize设置
Epoch,Batchsize,Iterations,这三个都是深度学习训练模型时经常遇到的概念。你一定有过这样的时刻,面对这几个词傻傻分不清楚,这三个概念究竟是什么,它们又有什么区别?梯度下降法一切的一切,要从机器学习中的梯度下降法说起。首先让我们来回顾一下这个常见的不能再常见的算法。梯度下降法是机器学习中经典的优化算法之一,用于寻求一个曲线的最小值。所谓"梯度",即一条曲线的坡度或倾斜率,"下降"指代下降递减的过程。梯度下降法是迭代的,也就是说我们需要多次计算结果,最终求得最优解。梯度下降的迭代转载 2020-07-28 16:21:13 · 9975 阅读 · 3 评论 -
正确率、精确率、召回率介绍+Tensorflow代码实现
1.二分类评价标准介绍在进行二分类后需要对分类结果进行评价,评价的标准除了常用的正确率之外还有召回率精确度,虚警率和漏警率等。首先介绍一下最常用的正确率正确率(Accuracy)表示正负样本被正确分类的比例,计算公式如下:其中NTPN_{TP}NTP 表示正类样本被正确分类的数目,NTNN_{TN}NTN表示负类样本被正确分类的数目,NFPN_{FP}NFP表示负类样本被分为正类的数目,NFNN_{FN}NFN表示正类样本被分为负类的数目。如下表所示:精确率(Precision)表转载 2020-07-26 21:40:12 · 5153 阅读 · 0 评论 -
tensorflow快速安装及出错解决+pip安装第三方包超时问题解决+JupyterNoteBook修改默认项目路径
一、tensorflow安装1、关于安装tensorflow有两种,一种是离线安装,也就是提前下载好tensorflow的whl文件,一般我选择放在python解释器的Scripts目录下,如果这个目录配置了环境变量,那么直接在cmd中使用命令安装即可:pip install tensorflow-2.0.0-cp37-cp37m-win_amd64.whl另一种是在线安装,一般直接用命令...原创 2020-03-19 12:07:42 · 1826 阅读 · 0 评论 -
注意力机制的基本思想和实现原理(很详细)
作者:张俊林链接:https://www.zhihu.com/question/68482809/answer/264632289来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。注意力模型最近几年在深度学习各个领域被广泛使用,无论是图像处理、语音识别还是自然语言处理的各种不同类型的任务中,都很容易遇到注意力模型的身影。所以,了解注意力机制的工作原...转载 2019-12-05 18:09:01 · 1759 阅读 · 0 评论 -
LSTM、BiLSTM讲解及实践+GRU讲解
在上篇文章RNN(循环/递归神经网络)详解中详细介绍了RNN以及RNN的弊端,再次回顾。1、普通RNN和LSTM在实际应用中普通的 RNN 是非常难以训练的:假设有一段关键文字“xxxx[key]xxx…xxxx”要求 RNN 分析出与 key 相关的 结果,即文字中的 key 是 RNN 进行分析所需要的关键数据。但此时 key 出现在 句子开头(t1),此信息源的记忆要经过非常一段长的时...转载 2019-11-10 16:34:42 · 17665 阅读 · 6 评论 -
RNN(循环/递归神经网络)详解
文章目录1、RNN概述2、RNN模型3、RNN前向传播算法4、RNN反向传播算法推导5、RNN弊端6、参考链接1、RNN概述上篇文章四种基本的神经网络架构中,我们介绍了RNN(Recurrent Neural Network)。基于RNN的语言模型主要有两方面的应用:一,基于每个序列在现实世界中出现的可能性对其进行打分,这实际上提供了一个针对语法和语义正确性的度量,语言模型通常为作为机器翻译...转载 2019-11-10 15:20:49 · 1479 阅读 · 0 评论 -
四种基本的神经网络架构
原文地址:一文看懂四种基本的神经网络架构刚刚入门神经网络,往往会对众多的神经网络架构感到困惑,神经网络看起来复杂多样,但是这么多架构无非也就是三类,前馈神经网络,循环网络,对称连接网络,本文将介绍四种常见的神经网络,分别是CNN,RNN,DBN,GAN。通过这四种基本的神经网络架构,我们来对神经网络进行一定的了解。1、什么是神经网络神经网络是机器学习中的一种模型,是一种模仿动物神经网络行为特...转载 2019-11-10 10:05:29 · 3858 阅读 · 0 评论 -
深度学习入门笔记
我这里做一个桥梁作用:深度学习入门笔记,写的非常好的文章。原创 2019-10-19 10:59:01 · 395 阅读 · 0 评论