假设你是一位男孩,而上天在你20-30岁间安排了20位适合你的女孩。这些女孩都愿意作为你的伴侣,但你只能选择他们其中一个。选择的条件如下:
- 对于你来说,这20位女孩是可以排序的,也就是说事后你可以对她们的质量进行排名,排名第一的女孩对你来说就是最好的,排名第二十的对你来说就是最差的。
- 这20位女孩不是同时出现在你的生命中,而是按照时间顺序先后出现,每出现一个你都要决定留下还是拒绝。如果留下她,她就会成为你的终身伴侣,你将没有权利选择后面的女孩;如果你拒绝,你还可以选择后面的女孩,但是对前面已经拒绝的女孩就没有机会从头再来。
假设上天是完全随机安排各个时间段出现的女孩,即出现的时间先后和女孩的质量完全没有关系。那么,你应该在什么时候决定接受一位女孩,并使得被接受的那位女孩属于最好女孩的可能性最大呢?
策略1:事先抽签,抽到第几个就第几个。比如,抽到第10位,那么第10个在你生命中出现的女孩就事前被确定为你的伴侣。而她刚好是最好的女孩之概率是多少呢?答案是1/20=0.05。这种策略使你有5%的可能性获得最好的女孩。这样的概率显然太小
我们有没有比较好的策略以更大的概率找到最好的女孩呢
策略2:取某个中间点n,如果在这个中间点之前无论女孩怎么样都不会考虑,到第n个时就会正式考虑了,如果当前女孩比以前的都好,那么就选为终生伴侣,否则放弃,从下一个继续选。这也比较符合我们日常的做法。那么这个中间点n该怎么确定才能是概率最大,我们接下来分析一下
假设第K个女孩是最好的,概率为1/20,当我们从n开始正式考虑时要想找到最好的女孩,需要k>n,也就是说最好的女孩在第n个之后。这样还不能保证一定能找到最好的女孩,因为我们的策略是从n开始,如果当前的比以前所有的都好,就会选择。所以要想在n之后k之前的都不选,那么需要在k之前最好的女孩出现在n之前,这样就不会选择从n到k-1之间的任何女孩。这样的话第k个女孩是最好的女孩并且k之前最好的女孩出现在n之前的概率为 1/20*(n-1)/(k-1) ,其中k的取值为[n,20],所以从n开始正式考虑能找到最好女孩的概率为:
用C++编程求出n从1到20的概率
#define GIRLNUM 20 //女生个数
void theory(){
for (int n=1;n<GIRLNUM+1;n++)
{
float pro=0;
for (int k=n;k<GIRLNUM+1;k++)
{
pro+=(float)(n-1)/(k-1);
}
pro=pro/20;
cout<<n<<" => "<<pro*100<<"%"<<endl;
}
}
运行结果如下:
从结果中可以看出,从第八个开始考虑时概率最大,为38.42%
接下来我从统计的角度验证一下上述结果,c++源代码如下:
#include "stdafx.h"
#include <iostream>
#include <CTIME>
using namespace std;
#define GIRLNUM 20 //女生个数
#define TESTNUM 1000000 //样本个数
//随机生成GIRLNUM个女孩的排列
void generate(int * girl)
{
for (int i=0;i<GIRLNUM;i++)
{
girl[i]=i;
}
//与当前元素之后的某个元素交换
for (int j=0;j<GIRLNUM;j++)
{
int index=rand()%(GIRLNUM-j)+j;
int temp=girl[j];
girl[j]=girl[index];
girl[index]=temp;
}
}
void statistics(){
float probability[GIRLNUM];
memset(probability,0,GIRLNUM*sizeof(int));
srand(time(NULL));
for (int test=0;test<TESTNUM;test++)
{
int girl[GIRLNUM];
//随机生成女生序列
generate(girl);
for (int cur=0;cur<GIRLNUM;cur++)
{
int bestGirl=girl[0];
int selectGirl=girl[0];
for (int here=1;here<GIRLNUM;here++)
{
//从cur开始正式考虑
if (here>=cur)
{
selectGirl=girl[here];
if(girl[here]>bestGirl)
{
break;
}
}
if (bestGirl<girl[here])
{
bestGirl=girl[here];
}
}
//如果选择是最好的,则记录下来
if (selectGirl==GIRLNUM-1)
{
probability[cur]++;
}
}
}
for (int m=0;m<GIRLNUM;m++)
{
probability[m]=(float)probability[m]/TESTNUM;
cout<<"从第 "<<m+1<<" 个开始考虑的概率为: "<<probability[m]*100<<"%"<<endl;
}
}
实验中样本个数为100万,结果如下:
结果显示,从第八个开始考虑,概率最大,为38.42%,和上面理论论述的结果是一样的
PS:由于随机函数并不是真正的随机,得到的结果和理论结果稍有误差