HDU 1233 还是畅通工程

Time Limit: 2000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u

Description

某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。 
 

Input

测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。 
当N为0时,输入结束,该用例不被处理。 
 

Output

对每个测试用例,在1行里输出最小的公路总长度。  

Sample Input

     
     
           
           
3 1 2 1 1 3 2 2 3 4 4 1 2 1 1 3 4 1 4 1 2 3 3 2 4 2 3 4 5 0
 


Sample Output

     
     
3
5

Hint

    
    
Hint Huge input, scanf is recommended.
分析:最小生成树kruskal算法

#include<stdio.h>
#include<string.h>
#include<math.h>
#include<iostream>
#include<algorithm>

using namespace std;

struct edge
{
    int u,v,cost;
    bool operator < (const edge &w)const//将权值由小到大排序
    {
        return cost < w.cost;
    }
}a[5000];
int n,m;
int p[110];

int find(int x)//并查集查找
{
    while(x != p[x])
    {
        x = p[x];
    }
    return x;
}

int kruskal()
{
    sort(a,a + m);//排序
    for(int i = 1;i <= n;i++)//并查集初始化
        p[i] = i;
    int ans = 0;//结果初始化为0
    for(int i = 0;i < m;i++)
    {
        int x = find(a[i].u);
        int y = find(a[i].v);
        if(x != y)//如果不在一个连通分量
        {
            ans += a[i].cost;//将权值加入结果中
            p[x] = y;//合并连通分量
        }
    }
    return ans;
}

int main()
{
    while(scanf("%d",&n))
    {
        if(n == 0)
            break;
        m = n * (n - 1) / 2;
        for(int i = 0;i < m;i++)
        {
            scanf("%d %d %d",&a[i].u,&a[i].v,&a[i].cost);
        }
        printf("%d\n",kruskal());
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值