Time Limit: 2000MS | Memory Limit: 32768KB | 64bit IO Format: %I64d & %I64u |
Description
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最小的公路总长度。
Sample Input
3 1 2 1 1 3 2 2 3 4 4 1 2 1 1 3 4 1 4 1 2 3 3 2 4 2 3 4 5 0
Sample Output
35
Hint
Hint Huge input, scanf is recommended.
分析:最小生成树kruskal算法
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<iostream>
#include<algorithm>
using namespace std;
struct edge
{
int u,v,cost;
bool operator < (const edge &w)const//将权值由小到大排序
{
return cost < w.cost;
}
}a[5000];
int n,m;
int p[110];
int find(int x)//并查集查找
{
while(x != p[x])
{
x = p[x];
}
return x;
}
int kruskal()
{
sort(a,a + m);//排序
for(int i = 1;i <= n;i++)//并查集初始化
p[i] = i;
int ans = 0;//结果初始化为0
for(int i = 0;i < m;i++)
{
int x = find(a[i].u);
int y = find(a[i].v);
if(x != y)//如果不在一个连通分量
{
ans += a[i].cost;//将权值加入结果中
p[x] = y;//合并连通分量
}
}
return ans;
}
int main()
{
while(scanf("%d",&n))
{
if(n == 0)
break;
m = n * (n - 1) / 2;
for(int i = 0;i < m;i++)
{
scanf("%d %d %d",&a[i].u,&a[i].v,&a[i].cost);
}
printf("%d\n",kruskal());
}
return 0;
}