【题目描述】
元旦快到了,校学生会让乐乐负责新年晚会的纪念品发放工作。为使得参加晚会的同学所获得的纪念品价值相对均衡,他要把购来的纪念品根据价格进行分组,但每组最多只能包括两件纪念品,并且每组纪念品的价格之和不能超过一个给定的整数。为了保证在尽量短的时间内发完所有纪念品,乐乐希望分组的数目最少。
你的任务是写一个程序,找出所有分组方案中分组数最少的一种,输出最少的分组数目。
【输入格式】
包含n+2行:
第1行包括一个整数w,为每组纪念品价格之和的上限;第2行为一个整数n,表示购来的纪念品的总件数;
第3到n+2行每行包含一个正整数Pi(5≤Pi≤w),表示所对应纪念品的价格。
【输出格式】
仅一行,包含一个整数,表示最少的分组数目。
【输入样例】
100
9
90
20
20
30
50
60
70
80
90
【输出样例】
6
【数据范围】
50%的数据满足:1≤n≤15;
100%的数据满足:1≤n≤30000,80≤w≤200。
C++ 方法一:
#include <bits/stdc++.h>
using namespace std;
int a[30010],b[30010],c[30010];
int ans=0;
int main( void )
{
int w,n;
//第 1 行包括一个整数 w,为每组纪念品价格之和的上限;
//第 2 行为一个整数 n,表示购来的纪念品的总件数;
cin>>w>>n;
for(int i=1;i<=n;++i)
{
//第 3 到 n+2 行每行包含一个正整数 Pi(5≤Pi≤w),
//表示所对应纪念品的价格。
cin>>a[i];
//桶排序 预处理
++b[ a[i] ];
}
/*
for(int i=1;i<=300;++i)
{
while( b[i]--)
{
cout<<i<<" ";
cout<<b[i]<<endl;
}
}
cout<<endl;
*/
int m=0;
for(int i=1;i<=n;++i)
{
if( b[a[i]] )//b[20]=2
{
--b[ a[i] ];//20
int j=w-a[i];//80
//w=j+a[i];
//找不到则什么都不做
for(;j>0 && b[j] == 0; --j)
{
;
}
//c[j]==0 表示没有用过
if( b[j] && c[j]==0 )
{
--b[j];
//用过不能再用
c[j]=1;
}
++ans;
cout<<"i="<<i<<" b["<<a[i]<<"]="<<b[a[i]]<<" ans="<<ans<<endl;
}
}
cout<<ans<<endl;
}
/*
【输入样例】
100
9
90
20
20
30
50
60
70
80
90
【输出样例】
6
*/
C++方法二:
#include <bits/stdc++.h> #include <algorithm> //algorithm:算法 using namespace std; int price[30005]; int main() { int w,n; //第1行包括一个整数w,为每组纪念品价格之和的上限; cin>>w; //第2行为一个整数n,表示购来的纪念品的总件数; cin>>n; //第3到n+2行每行包含一个正整数Pi(5≤Pi≤w), //表示所对应纪念品的价格。 for(int i=1;i<=n;++i) { cin>>price[i]; //price } //快速排序是一种比桶排序、 //冒泡排序、选择排序更好的一种排序算法。 sort(price+1,price+n+1); //price[1]-prince[n]; int i=1,j=n; int ans=0; while( i <= j ) { if(price[i]+price[j]<=w) { ++i; --j; //获得2个为一组的组 ++ans; } /* 1.选定了一个纪念品A, 在剩余的纪念品中找不到可以与A匹配的纪念品B, 使得A+B≤w,此时只能纪念品A单独分一组。 这种情况容易理解。 */ else { //最后1个只能单独1组 --j; ++ans; } } cout<<ans<<endl; return 0; } //细节决定成败