511、3304:练51.1 向量点积计算
/*
NOI / 1.6编程基础之一维数组
09向量点积计算 2021.11.28 AC
http://noi.openjudge.cn/ch0106/solution/31680824/
*/
#include <bits/stdc++.h>
using namespace std;
int main()
{
int n,sum=0;
int a[1001]={},b[1001]={};
cin>>n;
for(int i=0;i<n;++i)cin>>a[i];
for(int i=0;i<n;++i)cin>>b[i];
for(int i=0;i<n;++i)
{
sum+=a[i]*b[i];
}
cout<<sum;
return 0;
}
512、3305:练51.2 老鹰捉小鸡
/*
试编一程序,模拟10次位置的变化过程。
1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
3 4 1 2 3
.........
*/
#include<iostream>
using namespace std;
int main()
{
int i,j,a[6],n;
//产生一个随机值,因为a[0]是局部变量
//cout<<a[0]<<endl;
for(i=1;i<6;i++)
a[i]=i;
//输出第1次的位置
i=1;
cout<<i<<": ";
for(j=1;j<6;j++)
cout<<a[j]<<" ";
cout<<endl;
for(i=2;i<=10;i++)
{
//移动位置
for(j=0;j<=4;j++)
a[j]=a[j+1];
a[5]=a[0];
//输出位置
cout<<i<<": ";
for(j=1;j<=5;j++)
cout<<a[j]<<" ";
cout<<endl;
}
return 0;
}
/*
一般讲课略难
做题要做比讲课容易一些的题目
2040:【例5.7】筛选法找质数
http://ybt.ssoier.cn:8088/problem_show.php?pid=2040
2041:【例5.9】新矩阵
http://ybt.ssoier.cn:8088/problem_show.php?pid=2041
2043:【例5.11】杨辉三角形
http://ybt.ssoier.cn:8088/problem_show.php?pid=2043
*/
513、3306:练51.3 纸杯猜数
514、3307:【例52.1】 不与最大数相同的数字之和
515、3308:【例52.2】 序列倒置
516、997.前缀和的逆(课程E)
#include<bits/stdc++.h>
using namespace std;
int main(){
int n;
cin>>n;
int a[n+5],b[n+5];
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
b[1]=a[1];
for(int i=2;i<=n;i++)
{
b[i]=a[i]-a[i-1];
}
for(int i=1;i<=n;i++)
{
cout<<b[i]<<" ";
}
return 0;
}
517、998.新数列(课程E)
518、384.荧光棒
int main(){
int a,b,c=0;
cin>>a>>b;
for(int i=a;i<=b;i++){
if(i%11==0){
c+=3;
}
}
pen.size(5).c(3);
for(int i=1;i<=c;i++){
pen.fd(50).rt(360/c);
}
return 0;
}
519、385.身高
int main(){
int n,t;
int minn=10000,maxn=0;
int a[10005];
cin>>n;
for(int i=1; i<=n; i++){
cin>>t;
a[t]++;
if(minn>t) minn=t;
if(maxn<t) maxn=t;
}
for(int i=minn; i<=maxn; i++){
if(a[i]==1){
for(int j=1; j<=a[i]; j++){
p.fd(i).rt(90);
p.fd(20).rt(90);
p.fd(i).rt(90);
p.fd(20).bk(20).rt(90);
}
}
else if(a[i]>1)
{
for(int j=1; j<=1; j++){
p.fd(i).rt(90);
p.fd(20).rt(90);
p.fd(i).rt(90);
p.fd(20).bk(20).rt(90);
}
}
}
return 0;
}
520、386.山洞
如果回到小时候,三条高计算面积
数学之美-级数求和
五年级思维题,求阴影面积
Kurzgesagt科普-【中英字幕】中子星-除了黑洞以外最极端的东西
二次函数中平行四边形存在性问题
几何代数的补充
信息时代的领航员——A*算法|高新一中科技节参赛作品(2026届七班)
数学天才康托尔,碾压高斯,无穷理论颠覆2000年数学体系
数学归纳法、裂项相消、泰勒级数,三个求和方法挑一个喜欢的吧
【抽象代数】探索二面体群
2023年数学界的突破性事件
如何书写?非数竞赛撞上黎曼引理!!!
常用的24个不定积分公式及证明
颠覆认知!傅里叶变换!看清华大佬李永乐如何高效通俗易懂的讲解
颠覆认知!傅里叶变换!看清华大佬李永乐如何高效通俗易懂的讲解【傅里叶变换公式】手把手教你公式推导!小学生都能轻松学懂!!!——(高等数学、线性代数、AI)_哔哩哔哩_bilibili
【Manim】莱布尼茨级数与圆周率的关系
当几何代数遇到狭义相对论会怎么样,如何直观闵氏时空。
保送北大?竞赛教练?关于竞赛我有许多要讲给你听
为什么要学复分析?复数分析能做什么?
【数据结构】哈希表了解一下?
求阴影面积,补形是很重要是思维方式,向外求
什么是复数?复数基础知识的完整指南【全英】
角格点问题该怎么做
06-12 凸优化问题
2-可视化剪切、正交、投影、可逆矩阵的作用
对dy,dx充分认识, 是微积分捷径之路的关键
一图看懂,点到直线距离公式
求阴影面积
7岁掌握高中数学,13岁自学微积分,2年完成别人12年的学业!
7岁掌握高中数学,13岁自学微积分,2年完成别人12年的学业!_哔哩哔哩_bilibili
NOI数学 学习 相关书籍及视频等资料(不包括CTS内容)
https://blog.csdn.net/dllglvzhenfeng/article/details/135502149
组合数学速成版cugyyds~
组合数学-21讲-上海交通大学
“ 学好信奥的 5大要素 五大要点 ”
1、数学能力
2、学习习惯
3、心理素质
4、兴趣爱好
5、家长与学校的支持和规划