树上的启发式合并 CF1009 F. Dominant Indices

http://codeforces.com/contest/1009/problem/F

讲解:http://codeforces.com/blog/entry/44351

讲解中的问题是解决树上结点特性查询,而本题是查询相对于一个结点每一层根的个数。

#include<bits/stdc++.h>
#define maxn 1000010
using namespace std;
typedef pair<int,int> P;
vector<int> G[maxn];
int sz[maxn];
int dep[maxn],cnt[maxn],ans[maxn];
priority_queue<P> q;
void getsz(int v,int fa)
{
	sz[v]=1;
	for(int i=0;i<G[v].size();i++)
	{
		if(G[v][i]!=fa)
		{
			dep[G[v][i]]=dep[v]+1;//记录每一个结点所在层数 
			getsz(G[v][i],v);
			sz[v]+=sz[G[v][i]];
		}
	}
}

void add(int v,int fa)//加结点
{
	cnt[dep[v]]++;
	q.push(P(cnt[dep[v]],-dep[v]));//優先隊列維護每一層點的個數,點數相同的層數小的優先。
	for(int i=0;i<G[v].size();i++)
	{
		if(G[v][i]!=fa)
			add(G[v][i],v);
	}
}

void del(int v,int fa)//删结点
{
	cnt[dep[v]]--;
	for(int i=0;i<G[v].size();i++)
	{
		if(G[v][i]!=fa)
			del(G[v][i],v);
	}
}
void dfs(int v,int fa,int keep)
{
	int mx=-1,bigChild=-1;
	for(int i=0;i<G[v].size();i++)//找到最大孩子
	{
		if(G[v][i]!=fa && sz[G[v][i]]>mx)
		{
			mx=sz[G[v][i]];
			bigChild=G[v][i];
		}
	}
	for(int i=0;i<G[v].size();i++)//先处理非最大孩子
	{
		if(G[v][i]!=fa && G[v][i]!=bigChild)
			dfs(G[v][i],v,0);
	}
	if(bigChild!=-1)//处理最大孩子
		dfs(bigChild,v,1);//只有两种情况不用删点,头结点或是最大孩子
	for(int i=0;i<G[v].size();i++)
	{
		if(G[v][i]!=fa && G[v][i]!=bigChild)
			add(G[v][i],v);
	}
	cnt[dep[v]]++;
	q.push(P(cnt[dep[v]],-dep[v]));
	ans[v]=-q.top().second-dep[v];//結點數最多的層的編號減去當前編號即是答案。
	if(keep==0)
	{
		del(v,fa);
		while(!q.empty())
			q.pop();
	}
}

int main()
{
	int n;
	while(scanf("%d",&n)!=EOF)
	{
		for(int i=1;i<=n;i++)
			G[i].clear();
		while(!q.empty())
			q.pop();
		memset(cnt,0,sizeof(cnt));
		for(int i=1;i<n;i++)
		{
			int x,y;
			scanf("%d%d",&x,&y);
			G[x].push_back(y);
			G[y].push_back(x);
		}
		getsz(1,-1);
		dfs(1,-1,1);/**********/
		for(int i=1;i<=n;i++)
			printf("%d\n",ans[i]);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值