2、有r个球,随机地放在n个盒子中(r<=n),则某个指定的r个盒子中各有一球的概率为()。
- A: r ! n r \frac{r!}{n^r} nrr!
- B: C n r r ! n r C^r_n\frac{r!}{n^r} Cnrnrr!
- C: n ! r n \frac{n!}{r^n} rnn!
- D: C r n n ! r n C^n_r\frac{n!}{r^n} Crnrnn!
解析:
本题做法,先求总样本空间的数量,有r个球,放在n个盒子中,样本空间总量就是 n r n^r nr中放法,这n种放法中区分前后,也就是有组合。
然后,计算指定的r个盒子中各有一球的概率,第一球面临着r个盒子,有r种放法,第二球面临着r-1个盒子,有r-1种放法,第r球有0种放法,把所有的可能相加,就是r! 。