概率论题02:有r个球,随机地放在n个盒子中(r<=n),则某个指定的r个盒子中各有一球的概率为()。

2、有r个球,随机地放在n个盒子中(r<=n),则某个指定的r个盒子中各有一球的概率为()。

  • A: r ! n r \frac{r!}{n^r} nrr!
  • B: C n r r ! n r C^r_n\frac{r!}{n^r} Cnrnrr!
  • C: n ! r n \frac{n!}{r^n} rnn!
  • D: C r n n ! r n C^n_r\frac{n!}{r^n} Crnrnn!

解析:

本题做法,先求总样本空间的数量,有r个球,放在n个盒子中,样本空间总量就是 n r n^r nr中放法,这n种放法中区分前后,也就是有组合。

然后,计算指定的r个盒子中各有一球的概率,第一球面临着r个盒子,有r种放法,第二球面临着r-1个盒子,有r-1种放法,第r球有0种放法,把所有的可能相加,就是r! 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dlpmmk

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值