第一次的风暴

Description

在游戏厅大赚了一笔的Randy终于赢到了他想要的家具。乘此机会,他想把自己的房间好好整理一下。

在百货公司,可以买到各种各样的正方形的地砖,为了美观起见,Randy不希望同样颜色的正方形地砖相邻。所以他找到了Tio来帮忙解决这件事情。

Tio很快解决了这个任务。然而,出于某种强迫症,他希望在地上按照长宽划分成网格后,逐行逐列每一块的颜色组成的序列的字典序最小。他希望你帮忙验证一下她的方案。

Analysis

要求字典序最小,显然的贪心。对于自上而下自左而右的每个点,有两种方案:融合于左面的正方形中;自己另选一个字母。由四色定理知字母量一定很稀少,所以枚举出最小的与上方和右方颜色不同的点(下方不可能先染)。如果最优策略为融合,就进行融合可行性判断:如果自己处于左方正方形的第一行且左方正方形依旧可以扩展,就将左正方形扩大1,否则自己作为一个新正方形。

接下来就是模拟..细节非常重要。

考试时候WA75,因为没考虑右方颜色,我很奇怪怎么还有这么多分..

Code

#include <bits/stdc++.h>
int col[110][110],squ[110][110],js,bx[110],by[110],ex[110],ey[110];
int main(){
    freopen("tile.in","r",stdin);
    freopen("tile.out","w",stdout);
    int n,m;
    scanf("%d%d",&n,&m);
    int x=1,y=0;
    while(1){
        y++;
        if(y>m)
            y=1,x++;
        if(x>n)break;
        if(col[x][y])continue;
        int sub=0;
        for(int i=1;i<=100;i++)
            if((x==1||i!=col[x-1][y])&&(y==m||i!=col[x][y+1])){
                sub=i;
                break;
            }
        if(y==1||col[x][y-1]>sub){
            col[x][y]=sub;
            squ[x][y]=++js;
            bx[js]=ex[js]=x;
            by[js]=ey[js]=y;
        }
        else if(bx[squ[x][y-1]]<x||ex[squ[x][y-1]]==n){
            while(sub==col[x][y-1]||(x>1&&sub==col[x-1][y])||(y<m&&sub==col[x][y+1]))sub++;
            col[x][y]=sub;
            squ[x][y]=++js;
            bx[js]=ex[js]=x;
            by[js]=ey[js]=y;
        }
        else{
            int s=squ[x][y-1];
            ex[s]++;
            ey[s]++;
            for(int i=bx[s];i<=ex[s];i++)
                col[i][ey[s]]=col[x][y-1],squ[i][ey[s]]=s;
            for(int i=by[s];i<=ey[s];i++)
                col[ex[s]][i]=col[x][y-1],squ[ex[s]][i]=s;
        }
    }
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++)
            printf("%c",col[i][j]+'A'-1);
        puts("");
    }
    return 0;
}

转载于:https://www.cnblogs.com/qswx/p/9644081.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值