历届试题 连号区间数
时间限制:1.0s 内存限制:256.0MB
问题描述
小明这些天一直在思考这样一个奇怪而有趣的问题:
在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是:
如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增排序后能得到一个长度为R-L+1的“连续”数列,则称这个区间连号区间。
当N很小的时候,小明可以很快地算出答案,但是当N变大的时候,问题就不是那么简单了,现在小明需要你的帮助。
输入格式
第一行是一个正整数N (1 <= N <= 50000), 表示全排列的规模。
第二行是N个不同的数字Pi(1 <= Pi <= N), 表示这N个数字的某一全排列。
输出格式
输出一个整数,表示不同连号区间的数目。
样例输入1
4
3 2 4 1
样例输出1
7
样例输入2
5
3 4 2 5 1
样例输出2
9
题解:递增排序后为连续数列的情况下,区间最大值与区间最小值的差为区间端点下标的差;
样例1的区间为(1,1)、(1,2)、(1,3)、(1,4)、(2、2)、(3、3)、(4、4);
#include<iostream>
#include<algorithm>
using namespace std;
int p[50055];
int main()
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&p[i]);
int mi,ma,cnt=0;
for(int i=1;i<=n;i++){
mi=ma=p[i];
for(int j=i;j<=n;j++){
mi=min(mi,p[j]);
ma=max(ma,p[j]);
if(ma-mi==j-i)
cnt++;
}
}
printf("%d\n",cnt);
return 0;
}
/*
3
3 4
3 4 2
3 4 2 5
3 4 2 5 1
4
2
5
1
*/